Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimize swap between same indexed elements to make given Arrays strictly increasing

Minimize swap between same indexed elements to make given Arrays strictly increasing

Given two arrays arr1[] and arr2[] of size N each, the task is to find the minimum number of interchange of the same indexed elements required to make both arrays strictly increasing.

Note: Return -1 if it is not possible to make them strictly increasing.

Examples:

Input: arr1 = {1, 3, 5, 4}, arr2 = {1, 2, 3, 7}
Output: 1
Explanation:  
Swap arr1[3] and arr2[3]. 
Then the sequences are:
arr1 = [1, 3, 5, 7] and arr2 = [1, 2, 3, 4] which are both strictly increasing.
Therefore, minimum number of swaps required =1.

Input: arr1 = {0, 3, 5, 8, 9}, nums2 = {2, 1, 4, 6, 9}
Output: 1

 

Approach: The problem can be solved based on the following observation:

For each index there are two choices: either swap the elements or not. If in both cases the prefixes of both arrays are not strictly increasing then it is not possible to perform the task. Otherwise, continue with this approach.

The above observation can be implemented using dynamic programming concept. Create two dp[] arrays where – 

  • The ith index of one will store the minimum steps required to make the prefixes strictly increasing when the current elements are swapped and 
  • The other array will store the minimum steps when the current one is not swapped.

Follow the steps mentioned below to implement the above observation:

  • Consider two arrays swap[] and noswap[] where – 
    • swap[i] stores the minimum steps when arr1[i] & arr2[i] are swapped given the array is sorted from 0 to i-1.
    • noswap[i] store the minimum steps when no swap between arr1[i] & arr2[i] given the array is sorted from 0 to i-1.
  • Iterate the array and based on the relations between the array elements at ith and (i-1)th index update the value of the arrays.
    • If arr1[i] and arr2[i] are both greater than the (i-1)th elements of both the arrays, then
      • If the current values are swapped, the previous should also be swapped. So swap[i] = swap[i-1]+1
      • If the current elements are not swapped the same should be done with the previous elements. So, noswap[i] = noswap[i-1]
    • If arr1[i] is greater than arr2[i-1] and arr2[i] greater than arr1[i-1]:
      • If we swap ith index elements then we should not swap (i-1)th index elements. So swap[i] = min(swap[i], noswap[i-1]).
      • Due to the same condition noswap[i] = min(noswap[i], swap[i-1]+1).
  • The required answer is the minimum among the values at the last index of swap[] array and noswap[] array.

Below is the implementation for the above-mentioned approach:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate
// the minimum swaps required or
// it is not possible
int minSwap(int A[], int B[], int n)
{
    int swap[n], no_swap[n];
 
    swap[0] = 1;
    no_swap[0] = 0;
 
    // Loop to implement the dynamic programming
    for (int i = 1; i < n; ++i) {
        swap[i] = no_swap[i] = n;
 
        // assigning n to both of these
        // so that they can be compared easily
        if (A[i] > A[i - 1] && B[i] > B[i - 1]) {
 
            // If we swap position i,
            // we need to swap position i - 1.
            swap[i] = swap[i - 1] + 1;
 
            // If we don't swap position i,
            // we should not swap position i - 1.
            no_swap[i] = no_swap[i - 1];
        }
 
        if (A[i] > B[i - 1] && B[i] > A[i - 1]) {
 
            // If we swap position i,
            // we should not swap position i - 1.
            swap[i] = min(swap[i],
                          no_swap[i - 1] + 1);
 
            // If we don't swap position i,
            // we should swap position i - 1.
            no_swap[i] = min(no_swap[i],
                             swap[i - 1]);
        }
 
        // If any one the array is not possible
        // to be made strictly increasing
        if ((A[i] < A[i - 1] && A[i] < B[i - 1])
            || (B[i] < B[i - 1] && B[i] < A[i - 1])) {
            return -1;
        }
    }
 
    // Return the answer
    return min(swap[n - 1], no_swap[n - 1]);
}
 
// Driver Code
int main()
{
    int arr1[] = { 1, 3, 5, 4 };
    int arr2[] = { 1, 2, 3, 7 };
    int N = sizeof(arr1) / sizeof(arr1[0]);
 
    // Function call
    int ans = minSwap(arr1, arr2, N);
    cout << ans << endl;
    return 0;
}


Java




// Java program for above approach
import java.util.ArrayList;
 
class GFG {
 
// Function to calculate
// the minimum swaps required or
// it is not possible
static int minSwap(int A[], int B[], int n)
{
    int swap[] = new int[n], no_swap[] = new int[n];
 
    swap[0] = 1;
    no_swap[0] = 0;
 
    // Loop to implement the dynamic programming
    for (int i = 1; i < n; ++i) {
        swap[i] = no_swap[i] = n;
 
        // assigning n to both of these
        // so that they can be compared easily
        if (A[i] > A[i - 1] && B[i] > B[i - 1]) {
 
            // If we swap position i,
            // we need to swap position i - 1.
            swap[i] = swap[i - 1] + 1;
 
            // If we don't swap position i,
            // we should not swap position i - 1.
            no_swap[i] = no_swap[i - 1];
        }
 
        if (A[i] > B[i - 1] && B[i] > A[i - 1]) {
 
            // If we swap position i,
            // we should not swap position i - 1.
            swap[i] = Math.min(swap[i],
                          no_swap[i - 1] + 1);
 
            // If we don't swap position i,
            // we should swap position i - 1.
            no_swap[i] = Math.min(no_swap[i],
                             swap[i - 1]);
        }
 
        // If any one the array is not possible
        // to be made strictly increasing
        if ((A[i] < A[i - 1] && A[i] < B[i - 1])
            || (B[i] < B[i - 1] && B[i] < A[i - 1])) {
            return -1;
        }
    }
 
    // Return the answer
    return Math.min(swap[n - 1], no_swap[n - 1]);
}
 
// Driver code
public static void main(String args[]) {
 
    int arr1[] = { 1, 3, 5, 4 };
    int arr2[] = { 1, 2, 3, 7 };
    int N = arr1.length;
 
    // Function call
    int ans = minSwap(arr1, arr2, N);
    System.out.print(ans);
 
}
}
 
// This code is contributed by code_hunt.


Python3




# Python code to implement the approach
 
# Function to calculate
# the minimum swaps required or
# it is not possible
def minSwap(A, B, n):
    swap = [0] * n
    no_swap = [0] * n
 
    swap[0] = 1
    no_swap[0] = 0
 
    # Loop to implement the dynamic programming
    for i in range(1, n):
        swap[i] = no_swap[i] = n
 
        # assigning n to both of these
        # so that they can be compared easily
        if A[i] > A[i - 1] and B[i] > B[i - 1]:
            # If we swap position i,
            # we need to swap position i - 1.
            swap[i] = swap[i - 1] + 1
 
            #  If we don't swap position i,
            # we should not swap position i - 1.
            no_swap[i] = no_swap[i - 1]
 
        if A[i] > B[i - 1] and B[i] > A[i - 1]:
            #  If we swap position i,
            #  we should not swap position i - 1.
            swap[i] = min(swap[i], no_swap[i - 1] + 1)
 
            #  If we don't swap position i,
            #  we should swap position i - 1.
            no_swap[i] = min(no_swap[i], swap[i - 1])
 
        #  If any one the array is not possible
        #  to be made strictly increasing
        if (A[i] < A[i - 1] and A[i] < B[i - 1]) or (B[i] < B[i - 1] and B[i] < A[i - 1]):
            return -1
 
    # Return the answer
    return min(swap[n-1], no_swap[n-1])
 
 
# Driver Code
if __name__ == '__main__':
    arr1 = [1, 3, 5, 4]
    arr2 = [1, 2, 3, 7]
    N = len(arr1)
 
    # Function call
    ans = minSwap(arr1, arr2, N)
    print(ans)
 
# This code is contributed by Tapesh(tapeshdua420)


C#




// C# program for above approach
using System;
 
public class GFG {
 
  // Function to calculate
  // the minimum swaps required or
  // it is not possible
  static int minSwap(int []A, int []B, int n)
  {
    int []swap = new int[n];
    int []no_swap = new int[n];
 
    swap[0] = 1;
    no_swap[0] = 0;
 
    // Loop to implement the dynamic programming
    for (int i = 1; i < n; ++i) {
      swap[i] = no_swap[i] = n;
 
      // assigning n to both of these
      // so that they can be compared easily
      if (A[i] > A[i - 1] && B[i] > B[i - 1]) {
 
        // If we swap position i,
        // we need to swap position i - 1.
        swap[i] = swap[i - 1] + 1;
 
        // If we don't swap position i,
        // we should not swap position i - 1.
        no_swap[i] = no_swap[i - 1];
      }
 
      if (A[i] > B[i - 1] && B[i] > A[i - 1]) {
 
        // If we swap position i,
        // we should not swap position i - 1.
        swap[i] = Math.Min(swap[i], no_swap[i - 1] + 1);
 
        // If we don't swap position i,
        // we should swap position i - 1.
        no_swap[i] = Math.Min(no_swap[i],swap[i - 1]);
      }
 
      // If any one the array is not possible
      // to be made strictly increasing
      if ((A[i] < A[i - 1] && A[i] < B[i - 1])|| (B[i] < B[i - 1] && B[i] < A[i - 1])) {
        return -1;
      }
    }
 
    // Return the answer
    return Math.Min(swap[n - 1], no_swap[n - 1]);
  }
  // Driver code
  static public void Main(string []args) {
 
    int []arr1 = {1,3,5,4};
    int []arr2 = {1,2,3,7};
    int N = arr1.Length;
 
    // Function call
    int ans = minSwap(arr1, arr2, N);
    Console.WriteLine(ans);
 
  }
 
}
 
// This code is contributed by AnkThon


Javascript




<script>
// Javascript code to implement the approach
 
// Function to calculate
// the minimum swaps required or
// it is not possible
function minSwap(A,B,n)
{
    let swap = [];
    let no_swap = [];
 
    swap[0] = 1;
    no_swap[0] = 0;
 
    // Loop to implement the dynamic programming
    for (let i = 1; i < n; ++i) {
        swap[i] = no_swap[i] = n;
 
        // assigning n to both of these
        // so that they can be compared easily
        if (A[i] > A[i - 1] && B[i] > B[i - 1]) {
 
            // If we swap position i,
            // we need to swap position i - 1.
            swap[i] = swap[i - 1] + 1;
 
            // If we don't swap position i,
            // we should not swap position i - 1.
            no_swap[i] = no_swap[i - 1];
        }
 
        if (A[i] > B[i - 1] && B[i] > A[i - 1]) {
 
            // If we swap position i,
            // we should not swap position i - 1.
            swap[i] = Math.min(swap[i],
                          no_swap[i - 1] + 1);
 
            // If we don't swap position i,
            // we should swap position i - 1.
            no_swap[i] = Math.min(no_swap[i],
                             swap[i - 1]);
        }
 
        // If any one the array is not possible
        // to be made strictly increasing
        if ((A[i] < A[i - 1] && A[i] < B[i - 1])
            || (B[i] < B[i - 1] && B[i] < A[i - 1])) {
            return -1;
        }
    }
 
    // Return the answer
    return Math.min(swap[n - 1], no_swap[n - 1]);
}
 
// Driver Code
let arr1 = [ 1, 3, 5, 4 ];
let arr2 = [ 1, 2, 3, 7 ];
let N = arr1.length;
 
// Function call
let ans = minSwap(arr1, arr2, N);
console.log(ans);
 
// This code is contributed by akashish__
</script>


Output

1

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
20 Jul, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments