Friday, January 3, 2025
Google search engine
HomeData Modelling & AICalculate Root Mean Kth power of all array elements

Calculate Root Mean Kth power of all array elements

Given an array arr[] and an integer K, the task is to calculate the Kth root of the arithmetic mean of the Kth powers of all array elements.

Examples:

Input: arr[] = {1, 2, 3, 4, 5}, K = 2
Output: 3.31662
Explanation:
Sum of all Kth powers of array elements = 1 + 4 + 9 + 16 + 25 = 55
The value of root mean Kth power of array elements = ?(55 / 5) = ?11 = 3.31662

Input: arr[] = {10, 4, 6, 8}, K = 3
Output: 7.34847

Approach: The root mean of Kth powers of the array elements is given by the equation: 

\sqrt[k]{\frac{arr_{1}^{k} + arr_{2}^{k} + arr_{2}^{k} + ..... arr_{n}^{k}}{n}}

Therefore, the idea is to calculate the Kth power of each array element. Then, find the arithmetic mean of those elements. Finally, compute the Kth root of the calculated mean.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the Nth root
double nthRoot(int A, int N)
{
    // Initially guessing random
    // numberbetween 0 and 9
    double xPre = rand() % 10;
 
    // Smaller eps for more accuracy
    double eps = 1e-3;
 
    // Initialize difference between
    // the two roots by INT_MAX
    double delX = INT_MAX;
 
    // xK denotes current value of x
    double xK;
 
    // Iterate until desired
    // accuracy is reached
    while (delX > eps) {
 
        // Find the current value
        // from previous value by
        // newton's method
        xK = ((N - 1.0) * xPre
              + (double)A / pow(xPre, N - 1))
             / (double)N;
 
        delX = abs(xK - xPre);
        xPre = xK;
    }
 
    return xK;
}
 
// Function to calculate the Root
// Mean kth power of array elements
float RMNValue(int arr[], int n, int k)
{
    int Nth = 0;
 
    float mean = 0.0, root = 0.0;
 
    // Calculate sum of kth power
    for (int i = 0; i < n; i++) {
        Nth += pow(arr[i], k);
    }
 
    // Calculate Mean
    mean = (Nth / (float)(n));
 
    // Calculate kth Root of mean
    root = nthRoot(mean, k);
 
    return root;
}
 
// Driver Code
int main()
{
    int arr[] = { 10, 4, 6, 8 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
 
    // Function Call
    cout << RMNValue(arr, N, K);
 
    return 0;
}


Java




// Java program for
// the above approach
class GFG{
 
// Function to find the
  // Nth root
static double nthRoot(int A,
                      int N)
{
  // Initially guessing random
  // numberbetween 0 and 9
  double xPre = (Math.random() * 10) % 10;
 
  // Smaller eps for more accuracy
  double eps = 1e-3;
 
  // Initialize difference between
  // the two roots by Integer.MAX_VALUE
  double delX = Integer.MAX_VALUE;
 
  // xK denotes current value of x
  double xK = 0;
 
  // Iterate until desired
  // accuracy is reached
  while (delX > eps)
  {
    // Find the current value
    // from previous value by
    // newton's method
    xK = ((N - 1.0) * xPre +
          (double)A /
          Math.pow(xPre, N - 1)) /
          (double)N;
 
    delX = Math.abs(xK - xPre);
    xPre = xK;
  }
 
  return xK;
}
 
// Function to calculate the Root
// Mean kth power of array elements
static float RMNValue(int arr[],
                      int n, int k)
{
  int Nth = 0;
  float mean = 0, root = 0;
 
  // Calculate sum of kth power
  for (int i = 0; i < n; i++)
  {
    Nth += Math.pow(arr[i], k);
  }
 
  // Calculate Mean
  mean = (Nth / (float)(n));
 
  // Calculate kth Root of mean
  root = (float) nthRoot((int)mean, k);
 
  return root;
}
 
// Driver Code
public static void main(String[] args)
{
  int arr[] = {10, 4, 6, 8};
  int N = arr.length;
  int K = 3;
 
  // Function Call
  System.out.print(RMNValue(arr, N, K));
 
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program for
# the above approach
import sys
import random
 
# Function to find
# the Nth root
def nthRoot(A, N):
 
    # Initially guessing random
    # numberbetween 0 and 9
    xPre = random.random() % 10
 
    # Smaller eps for
    # more accuracy
    eps = 1e-3
 
    # Initialize difference between
    # the two roots by INT_MAX
    delX = sys.maxsize
 
    # xK denotes current
    # value of x
    xK = 0
 
    # Iterate until desired
    # accuracy is reached
    while (delX > eps):
 
        # Find the current value
        # from previous value by
        # newton's method
        xK = (((N - 1.0) * xPre +
                A / pow(xPre, N - 1)) / N)
        delX = abs(xK - xPre)
        xPre = xK
    
    return xK
 
# Function to calculate the Root
# Mean kth power of array elements
def RMNValue(arr, n, k):
 
    Nth = 0
    mean = 0.0
    root = 0.0
 
    # Calculate sum of kth power
    for i in range (n):
        Nth += pow(arr[i], k)
 
    # Calculate Mean
    mean = (Nth // (n))
 
    # Calculate kth Root of mean
    root = nthRoot(mean, k)
 
    return root
 
# Driver Code
if __name__ == "__main__":
 
    arr = [10, 4, 6, 8 ]
    N = len(arr)
    K = 3
 
    # Function Call
    print ( RMNValue(arr, N, K))
 
# This code is contributed by Chitranayal


C#




// C# program for the above approach 
using System;
 
class GFG{
  
// Function to find the
// Nth root
static double nthRoot(int A, int N)
{
     
    // Instantiate random number generator
    Random rand = new Random();
         
    // Initially guessing random
    // numberbetween 0 and 9
    double xPre = (rand.Next() * 10) % 10;
     
    // Smaller eps for more accuracy
    double eps = 1e-3;
     
    // Initialize difference between
    // the two roots by Integer.MAX_VALUE
    double delX = Int32.MaxValue;
     
    // xK denotes current value of x
    double xK = 0;
     
    // Iterate until desired
    // accuracy is reached
    while (delX > eps)
    {
         
        // Find the current value
        // from previous value by
        // newton's method
        xK = ((N - 1.0) * xPre +
              (double)A /
              Math.Pow(xPre, N - 1)) /
              (double)N;
         
        delX = Math.Abs(xK - xPre);
        xPre = xK;
    }
    return xK;
}
  
// Function to calculate the Root
// Mean kth power of array elements
static float RMNValue(int[] arr, int n,
                                 int k)
{
    int Nth = 0;
    float mean = 0, root = 0;
     
    // Calculate sum of kth power
    for(int i = 0; i < n; i++)
    {
        Nth += (int)Math.Pow(arr[i], k);
    }
     
    // Calculate Mean
    mean = (Nth / (float)(n));
     
    // Calculate kth Root of mean
    root = (float)nthRoot((int)mean, k);
     
    return root;
}
  
// Driver Code
public static void Main()
{
    int[] arr = { 10, 4, 6, 8 };
    int N = arr.Length;
    int K = 3;
     
    // Function call
    Console.Write(RMNValue(arr, N, K));
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
 
// Javascript program for the above approach 
 
// Function to find the
// Nth root
function nthRoot(A, N)
{
     
    // Initially guessing random
    // numberbetween 0 and 9
    var xPre = (Math.random() * 10) % 10;
     
    // Smaller eps for more accuracy
    var eps = 1e-3;
     
    // Initialize difference between
    // the two roots by Integer.MAX_VALUE
    var delX = Number.MAX_VALUE;
     
    // xK denotes current value of x
    var xK = 0;
     
    // Iterate until desired
    // accuracy is reached
    while (delX > eps)
    {
         
        // Find the current value
        // from previous value by
        // newton's method
        xK = ((N - 1.0) * xPre + A /
              Math.pow(xPre, N - 1)) / N;
         
        delX = Math.abs(xK - xPre);
        xPre = xK;
    }
    return xK;
}
 
// Function to calculate the Root
// Mean kth power of array elements
function RMNValue(arr, n, k)
{
    var Nth = 0;
    var mean = 0, root = 0;
     
    // Calculate sum of kth power
    for(var i = 0; i < n; i++)
    {
        Nth += Math.pow(arr[i], k);
    }
     
    // Calculate Mean
    mean = (Nth / (n));
     
    // Calculate kth Root of mean
    root = nthRoot(mean, k);
     
    return root;
}
 
// Driver Code
var arr = [ 10, 4, 6, 8 ];
var N = arr.length;
var K = 3;
 
// Function Call
document.write(RMNValue(arr, N, K));
 
// This code is contributed by Ankita saini
 
</script>


Output

7.65172







Time Complexity: O(N*log(sum)), where the sum is the sum of the square of all the given numbers in the array. 
Auxiliary Space: O(1)

Method:  Algorithmic approach

Steps:

  • initialize a variable sum with zero
  • Iterate through the array and calculate the Kth power of each element.
  • Add the Kth power of each element to the sum.
  • Calculate the arithmetic mean of Kth powers by dividing the sum by the length of the array.
  • Take the Kth root of the arithmetic mean calculated in step 4 to get the final answer.

Below is the code implementation: 

C++




#include <iostream>
#include <cmath>
using namespace std;
 
int main() {
      // Initialize the array and K
    int arr[] = {1, 2, 3, 4, 5};
    int K = 2;
    int n = sizeof(arr)/sizeof(arr[0]);
      // Initialize the sum to 0
    double sum = 0.0;
 
    for(int i=0; i<n; i++) {
        sum += pow(arr[i], K);
    }
     
    double mean = sum/n;
 
    double result = pow(mean, 1.0/K);
    // Output the result
    cout << result << endl;
 
    return 0;
}


Java




import java.util.Arrays;
 
public class MeanPowerRoot {
    public static void main(String[] args) {
        // Initialize the array and K
        int[] arr = {1, 2, 3, 4, 5};
        int K = 2;
        int n = arr.length;
 
        // Initialize the sum to 0
        double sum = 0.0;
 
        // Calculate the sum of Kth powers of array elements
        for (int i = 0; i < n; i++) {
            sum += Math.pow(arr[i], K);
        }
 
        // Calculate the mean
        double mean = sum / n;
 
        // Calculate the Kth root of the mean
        double result = Math.pow(mean, 1.0 / K);
 
        // Output the result
        System.out.println(result);
    }
}


Python3




import math
 
# Initialize the array and K
arr = [1, 2, 3, 4, 5]
K = 2
n = len(arr)
 
# Initialize the sum to 0
sum = 0.0
 
for i in range(n):
    sum += math.pow(arr[i], K)
 
mean = sum / n
 
result = math.pow(mean, 1.0 / K)
 
# Output the result
print(result)


C#




using System;
 
class Program
{
    static void Main()
    {
        // Initialize the array and K
        int[] arr = { 1, 2, 3, 4, 5 };
        int K = 2;
        int n = arr.Length;
 
        // Initialize the sum to 0
        double sum = 0.0;
 
        for (int i = 0; i < n; i++)
        {
            sum += Math.Pow(arr[i], K);
        }
 
        double mean = sum / n;
 
        double result = Math.Pow(mean, 1.0 / K);
 
        // Output the result
        Console.WriteLine(result);
    }
}


Javascript




// Initialize the array and K
const arr = [1, 2, 3, 4, 5];
const K = 2;
const n = arr.length;
 
// Initialize the sum to 0
let sum = 0.0;
 
for (let i = 0; i < n; i++) {
    sum += Math.pow(arr[i], K);
}
 
const mean = sum / n;
 
const result = Math.pow(mean, 1.0 / K);
 
// Output the result
console.log(result);


Output

3.31662








Time Complexity: O(n), where n is the number of elements in the input array.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
09 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments