Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIGenerate a sequence with product N such that for every pair of...

Generate a sequence with product N such that for every pair of indices (i, j) and i < j, arr[j] is divisible by arr[i]

Given a positive integer N, the task is to generate a sequence say arr[] of maximum length having all elements at least 2 such that the product of all the numbers in the sequence is N and for any pair of indices (i, j) and i < j, arr[j] is divisible by arr[i].

Examples:

Input: N = 360
Output: Maximum size = 3, final array = {2, 2, 90}
Explanation:
Consider the array arr[] be the resultant array, then the following operations can be performed:

  1. Add 2 to the array arr[]. Now, N = 360/2 = 180 and arr[] = {2}.
  2. Add 2 to the array arr[]. Now, N = 180/2 = 90 and arr[] = {2, 2}.
  3. Add 90 to the array arr[]. Now, arr[] = {2, 2, 90}.

After the above operations, the maximum size of the array is 3 and the resultant array is {2, 2, 90}.

Input: N = 810
Output: Maximum size = 4, final array = {3, 3, 3, 30}

Approach: The given problem can be solved by using the concept of prime factorization, the idea is to find the prime number having the maximum frequency of occurrence as N that can be represented as the product of prime numbers as:

N = (a1p1)*(a2p1)*(a3p1)*(a4p1)(……)*(anpn)

Follow the steps below to solve the problem:

  • Initialize a Map, say M that stores all the prime numbers as a key and their powers as values. For example, for the value 23, the map M stores as M[2] = 3.
  • Choose the prime factor which has the maximum power factor and store that power in a variable, say ans, and store that prime number in a variable say P.
  • If the value of ans is smaller than 2, then the resultant array will be of size 1 and the array element will be equal to N.
  • Otherwise, print the value of ans as the maximum length, and to print the final sequence, print the value of P (ans – 1) number of times, and then print (N/2ans) at the end.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the prime
// factors of N with their count
vector<pair<int, int> > primeFactor(
    int N)
{
    // Initialize a vector, say v
    vector<pair<int, int> > v;
 
    // Initialize the count
    int count = 0;
 
    // Count the number of divisors
    while (!(N % 2)) {
 
        // Divide the value of N by 2
        N >>= 1;
        count++;
    }
 
    // For factor 2 divides it
    if (count)
        v.push_back({ 2, count });
 
    // Find all prime factors
    for (int i = 3;
         i <= sqrt(N); i += 2) {
 
        // Count their frequency
        count = 0;
        while (N % i == 0) {
            count++;
            N = N / i;
        }
 
        // Push it to the vector
        if (count) {
            v.push_back({ i, count });
        }
    }
 
    // Push N if it is not 1
    if (N > 2)
        v.push_back({ N, 1 });
 
    return v;
}
 
// Function to print the array that
// have the maximum size
void printAnswer(int n)
{
    // Stores the all prime factor
    // and their powers
    vector<pair<int, int> > v
        = primeFactor(n);
 
    int maxi_size = 0, prime_factor = 0;
 
    // Traverse the vector and find
    // the maximum power of prime
    // factor
    for (int i = 0; i < v.size(); i++) {
 
        if (maxi_size < v[i].second) {
            maxi_size = v[i].second;
            prime_factor = v[i].first;
        }
    }
 
    // If max size is less than 2
    if (maxi_size < 2) {
        cout << 1 << ' ' << n;
    }
 
    // Otherwise
    else {
 
        int product = 1;
 
        // Print the maximum size
        // of sequence
        cout << maxi_size << endl;
 
        // Print the final sequence
        for (int i = 0;
             i < maxi_size - 1; i++) {
 
            // Print the prime factor
            cout << prime_factor << " ";
            product *= prime_factor;
        }
 
        // Print the last value of
        // the sequence
        cout << (n / product);
    }
}
 
// Driver Code
int main()
{
    int N = 360;
    printAnswer(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
    static class pair
    {
        int first, second;
        public pair(int first, int second) 
        {
            this.first = first;
            this.second = second;
        }   
    }
// Function to calculate the prime
// factors of N with their count
static Vector<pair > primeFactor(
    int N)
{
   
    // Initialize a vector, say v
    Vector<pair > v = new Vector<>();
 
    // Initialize the count
    int count = 0;
 
    // Count the number of divisors
    while ((N % 2)==0) {
 
        // Divide the value of N by 2
        N >>= 1;
        count++;
    }
 
    // For factor 2 divides it
    if (count!=0)
        v.add(new pair( 2, count ));
 
    // Find all prime factors
    for (int i = 3;
         i <= Math.sqrt(N); i += 2) {
 
        // Count their frequency
        count = 0;
        while (N % i == 0) {
            count++;
            N = N / i;
        }
 
        // Push it to the vector
        if (count!=0) {
            v.add(new pair( i, count ));
        }
    }
 
    // Push N if it is not 1
    if (N > 2)
        v.add(new pair( N, 1 ));
 
    return v;
}
 
// Function to print the array that
// have the maximum size
static void printAnswer(int n)
{
    // Stores the all prime factor
    // and their powers
    Vector<pair > v
        = primeFactor(n);
 
    int maxi_size = 0, prime_factor = 0;
 
    // Traverse the vector and find
    // the maximum power of prime
    // factor
    for (int i = 0; i < v.size(); i++) {
 
        if (maxi_size < v.get(i).second) {
            maxi_size = v.get(i).second;
            prime_factor = v.get(i).first;
        }
    }
 
    // If max size is less than 2
    if (maxi_size < 2) {
        System.out.print(1 << ' ');
    }
 
    // Otherwise
    else {
 
        int product = 1;
 
        // Print the maximum size
        // of sequence
        System.out.print(maxi_size +"\n");
 
        // Print the final sequence
        for (int i = 0;
             i < maxi_size - 1; i++) {
 
            // Print the prime factor
            System.out.print(prime_factor+ " ");
            product *= prime_factor;
        }
 
        // Print the last value of
        // the sequence
        System.out.print((n / product));
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 360;
    printAnswer(N);
 
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program for the above approach
from math import sqrt
 
# Function to calculate the prime
# factors of N with their count
def primeFactor(N):
     
    # Initialize a vector, say v
    v = []
 
    # Initialize the count
    count = 0
 
    # Count the number of divisors
    while ((N % 2) == 0):
         
        # Divide the value of N by 2
        N >>= 1
        count += 1
 
    # For factor 2 divides it
    if (count):
        v.append([2, count])
 
    # Find all prime factors
    for i in range(3, int(sqrt(N)) + 1, 2):
         
        # Count their frequency
        count = 0
        while (N % i == 0):
            count += 1
            N = N / i
 
        # Push it to the vector
        if (count):
            v.append([i, count])
 
    # Push N if it is not 1
    if (N > 2):
        v.append([N, 1])
 
    return v
 
# Function to print the array that
# have the maximum size
def printAnswer(n):
     
    # Stores the all prime factor
    # and their powers
    v = primeFactor(n)
 
    maxi_size = 0
    prime_factor = 0
 
    # Traverse the vector and find
    # the maximum power of prime
    # factor
    for i in range(len(v)):
        if (maxi_size < v[i][1]):
            maxi_size = v[i][1]
            prime_factor = v[i][0]
 
    # If max size is less than 2
    if (maxi_size < 2):
        print(1, n)
 
    # Otherwise
    else:
        product = 1
 
        # Print the maximum size
        # of sequence
        print(maxi_size)
 
        # Print the final sequence
        for i in range(maxi_size - 1):
             
            # Print the prime factor
            print(prime_factor, end = " ")
            product *= prime_factor
 
        # Print the last value of
        # the sequence
        print(n // product)
 
# Driver Code
if __name__ == '__main__':
     
    N = 360
     
    printAnswer(N)
     
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG{
    class pair
    {
        public int first;
        public int second;
        public pair(int first, int second) 
        {
            this.first = first;
            this.second = second;
        }   
    }
   
// Function to calculate the prime
// factors of N with their count
static List<pair > primeFactor(
    int N)
{
   
    // Initialize a vector, say v
    List<pair > v = new List<pair>();
 
    // Initialize the count
    int count = 0;
 
    // Count the number of divisors
    while ((N % 2)==0) {
 
        // Divide the value of N by 2
        N >>= 1;
        count++;
    }
 
    // For factor 2 divides it
    if (count!=0)
        v.Add(new pair( 2, count ));
 
    // Find all prime factors
    for (int i = 3;
         i <= Math.Sqrt(N); i += 2) {
 
        // Count their frequency
        count = 0;
        while (N % i == 0) {
            count++;
            N = N / i;
        }
 
        // Push it to the vector
        if (count!=0) {
            v.Add(new pair( i, count ));
        }
    }
 
    // Push N if it is not 1
    if (N > 2)
        v.Add(new pair( N, 1 ));
 
    return v;
}
 
// Function to print the array that
// have the maximum size
static void printAnswer(int n)
{
   
    // Stores the all prime factor
    // and their powers
    List<pair > v
        = primeFactor(n);
 
    int maxi_size = 0, prime_factor = 0;
 
    // Traverse the vector and find
    // the maximum power of prime
    // factor
    for (int i = 0; i < v.Count; i++) {
 
        if (maxi_size < v[i].second) {
            maxi_size = v[i].second;
            prime_factor = v[i].first;
        }
    }
 
    // If max size is less than 2
    if (maxi_size < 2) {
        Console.Write(1 << ' ');
    }
 
    // Otherwise
    else {
 
        int product = 1;
 
        // Print the maximum size
        // of sequence
        Console.Write(maxi_size +"\n");
 
        // Print the readonly sequence
        for (int i = 0;
             i < maxi_size - 1; i++) {
 
            // Print the prime factor
            Console.Write(prime_factor+ " ");
            product *= prime_factor;
        }
 
        // Print the last value of
        // the sequence
        Console.Write((n / product));
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 360;
    printAnswer(N);
 
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to calculate the prime
// factors of N with their count
function primeFactor(N)
{
 
    // Initialize a vector, say v
    let v = [];
 
    // Initialize the count
    let count = 0;
 
    // Count the number of divisors
    while (!(N % 2)) {
 
        // Divide the value of N by 2
        N >>= 1;
        count++;
    }
 
    // For factor 2 divides it
    if (count)
        v.push([2, count]);
 
    // Find all prime factors
    for (let i = 3; i <= Math.sqrt(N); i += 2) {
 
        // Count their frequency
        count = 0;
        while (N % i == 0) {
            count++;
            N = Math.floor(N / i);
        }
 
        // Push it to the vector
        if (count) {
            v.push([i, count]);
        }
    }
 
    // Push N if it is not 1
    if (N > 2)
        v.push([N, 1]);
 
    return v;
}
 
// Function to print the array that
// have the maximum size
function printAnswer(n)
{
 
    // Stores the all prime factor
    // and their powers
    let v = primeFactor(n);
 
    let maxi_size = 0, prime_factor = 0;
 
    // Traverse the vector and find
    // the maximum power of prime
    // factor
    for (let i = 0; i < v.length; i++) {
 
        if (maxi_size < v[i][1]) {
            maxi_size = v[i][1];
            prime_factor = v[i][0];
        }
    }
 
    // If max size is less than 2
    if (maxi_size < 2) {
        document.write(1 + ' ' + n);
    }
 
    // Otherwise
    else {
 
        let product = 1;
 
        // Print the maximum size
        // of sequence
        document.write(maxi_size + "<br>");
 
        // Print the final sequence
        for (let i = 0; i < maxi_size - 1; i++) {
 
            // Print the prime factor
            document.write(prime_factor + " ");
            product *= prime_factor;
        }
 
        // Print the last value of
        // the sequence
        document.write(Math.floor((n / product)));
    }
}
 
// Driver Code
 
let N = 360;
printAnswer(N);
 
// This code is contributed by _saurabh_jaiswal.
</script>


Output: 

3
2 2 90

 

Time Complexity: O(N3/2)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
09 Aug, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments