Friday, January 10, 2025
Google search engine
HomeData Modelling & AIModify N by adding its smallest positive divisor exactly K times

Modify N by adding its smallest positive divisor exactly K times

Given two positive integers N and K, the task is to find the value of N after incrementing the value of N in each operation by its smallest divisor exceeding N ( exceeding 1 ), exactly K times.

Examples:

Input: N = 5, K = 2 
Output: 12 
Explanation: 
Smallest divisor of N (= 5) is 5. Therefore, N = 5 + 5 = 10. 
Smallest divisor of N (= 10) is 2. Therefore, N = 5 + 2 = 12. 
Therefore, the required output is 12.

Input: N = 6, K = 4 
Output: 14

Naive Approach: The simplest approach to solve this problem to iterate over the range [1, K] using variable i and in each operation, find the smallest divisors greater than 1 of N and increment the value of N by the smallest divisor greater than 1 of N. Finally, print the value of N.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the smallest
// divisor of N greater than 1
int smallestDivisorGr1(int N)
{
    for (int i = 2; i <= sqrt(N);
         i++) {
 
        // If i is a divisor
        // of N
        if (N % i == 0) {
            return i;
        }
    }
 
    // If N is a prime number
    return N;
}
 
// Function to find the value of N by
// performing the operations K times
int findValOfNWithOperat(int N, int K)
{
 
    // Iterate over the range [1, K]
    for (int i = 1; i <= K; i++) {
 
        // Update N
        N += smallestDivisorGr1(N);
    }
 
    return N;
}
 
// Driver Code
int main()
{
    int N = 6, K = 4;
 
    cout << findValOfNWithOperat(N, K);
    return 0;
}


Java




// Java program to implement
// the above approach
 
class GFG{
 
// Function to find the smallest
// divisor of N greater than 1
static int smallestDivisorGr1(int N)
{
    for (int i = 2; i <= Math.sqrt(N);
         i++) {
 
        // If i is a divisor
        // of N
        if (N % i == 0) {
            return i;
        }
    }
 
    // If N is a prime number
    return N;
}
 
// Function to find the value of N by
// performing the operations K times
static int findValOfNWithOperat(int N, int K)
{
 
    // Iterate over the range [1, K]
    for (int i = 1; i <= K; i++)
    {
 
        // Update N
        N += smallestDivisorGr1(N);
    }
 
    return N;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 6, K = 4;
 
    System.out.print(findValOfNWithOperat(N, K));
}
}
 
// This code is contributed by shikhasingrajput


Python3




# Python 3 program to implement
# the above approach
import math
 
# Function to find the smallest
# divisor of N greater than 1
def smallestDivisorGr1(N):
    for i in range(2, int(math.sqrt(N))+1):
 
        # If i is a divisor
        # of N
        if (N % i == 0):
            return i
 
    # If N is a prime number
    return N
 
# Function to find the value of N by
# performing the operations K times
def findValOfNWithOperat(N, K):
 
    # Iterate over the range [1, K]
    for i in range(1, K + 1):
 
        # Update N
        N += smallestDivisorGr1(N)
 
    return N
 
# Driver Code
if __name__ == "__main__":
 
    N = 6
    K = 4
 
    print(findValOfNWithOperat(N, K))
 
    # This code is contributed by ukasp.


C#




// C# program to implement
// the above approach
using System;
public class GFG
{
 
  // Function to find the smallest
  // divisor of N greater than 1
  static int smallestDivisorGr1(int N)
  {
    for (int i = 2; i <= Math.Sqrt(N);
         i++) {
 
      // If i is a divisor
      // of N
      if (N % i == 0) {
        return i;
      }
    }
 
    // If N is a prime number
    return N;
  }
 
  // Function to find the value of N by
  // performing the operations K times
  static int findValOfNWithOperat(int N, int K)
  {
 
    // Iterate over the range [1, K]
    for (int i = 1; i <= K; i++)
    {
 
      // Update N
      N += smallestDivisorGr1(N);
    }
 
    return N;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int N = 6, K = 4;
 
    Console.Write(findValOfNWithOperat(N, K));
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// JavaScript program to implement
// the above approach
 
// Function to find the smallest
// divisor of N greater than 1
function smallestDivisorGr1(N)
{
    for (let i = 2; i <= Math.sqrt(N);
        i++) {
 
        // If i is a divisor
        // of N
        if (N % i == 0)
        {
            return i;
        }
    }
 
    // If N is a prime number
    return N;
}
 
// Function to find the value of N by
// performing the operations K times
function findValOfNWithOperat(N, K)
{
 
    // Iterate over the range [1, K]
    for (let i = 1; i <= K; i++)
    {
 
        // Update N
        N += smallestDivisorGr1(N);
    }
    return N;
}
 
// Driver Code
let N = 6, K = 4;
document.write(findValOfNWithOperat(N, K));
 
// This code is contributed by Surbhi Tyagi.
</script>


Output: 

14

 

Time Complexity: O(K * ?N) 
Auxiliary Space: O(1)

Efficient Approach: Follow the steps below to solve the problem:

  • If N is an even number then update the value of N to (N + K * 2).
  • Otherwise, find the smallest positive divisor greater than 1 of N say, smDiv and update the value N to (N + smDiv + (K – 1) * 2)
  • Finally, print the value of N.

Below is the implementation of the above approach:

C++14




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the smallest
// divisor of N greater than 1
int smallestDivisorGr1(int N)
{
    for (int i = 2; i <= sqrt(N);
         i++) {
 
        // If i is a divisor
        // of N
        if (N % i == 0) {
            return i;
        }
    }
 
    // If N is a prime number
    return N;
}
 
// Function to find the value of N by
// performing the operations K times
int findValOfNWithOperat(int N, int K)
{
    // If N is an even number
    if (N % 2 == 0) {
 
        // Update N
        N += K * 2;
    }
 
    // If N is an odd number
    else {
 
        // Update N
        N += smallestDivisorGr1(N)
             + (K - 1) * 2;
    }
 
    return N;
}
 
// Driver Code
int main()
{
    int N = 6, K = 4;
 
    cout << findValOfNWithOperat(N, K);
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
 
// Function to find the smallest
// divisor of N greater than 1
static int smallestDivisorGr1(int N)
{
    for(int i = 2; i <= Math.sqrt(N); i++)
    {
         
        // If i is a divisor
        // of N
        if (N % i == 0)
        {
            return i;
        }
    }
  
    // If N is a prime number
    return N;
}
  
// Function to find the value of N by
// performing the operations K times
static int findValOfNWithOperat(int N, int K)
{
     
    // If N is an even number
    if (N % 2 == 0)
    {
         
        // Update N
        N += K * 2;
    }
  
    // If N is an odd number
    else
    {
         
        // Update N
        N += smallestDivisorGr1(N) + (K - 1) * 2;
    }
    return N;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 6, K = 4;
  
    System.out.print(findValOfNWithOperat(N, K));
}
}
 
// This code is contributed by target_2


Python3




# Python program to implement
# the above approach
 
# Function to find the smallest
# divisor of N greater than 1
def smallestDivisorGr1(N):
    for i in range (sqrt(N)):
         i += 1
 
        # If i is a divisor
        # of N
    if(N % i == 0):
            return i
         
    # If N is a prime number
    return N
 
# Function to find the value of N by
# performing the operations K times
def findValOfNWithOperat(N, K):
   
  # If N is an even number
  if (N % 2 == 0):
     
    # Update N
    N += K * 2
     
  # If N is an odd number
  else:
    # Update N
    N += smallestDivisorGr1(N) + (K - 1) * 2
     
  return N
 
# Driver Code
N = 6
K = 4
print(findValOfNWithOperat(N, K))
    
# This code is contributed by shivanisinghss2110


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to find the smallest
// divisor of N greater than 1
static int smallestDivisorGr1(int N)
{
    for(int i = 2; i <= Math.Sqrt(N); i++)
    {
         
        // If i is a divisor
        // of N
        if (N % i == 0)
        {
            return i;
        }
    }
  
    // If N is a prime number
    return N;
}
  
// Function to find the value of N by
// performing the operations K times
static int findValOfNWithOperat(int N, int K)
{
     
    // If N is an even number
    if (N % 2 == 0)
    {
         
        // Update N
        N += K * 2;
    }
  
    // If N is an odd number
    else
    {
         
        // Update N
        N += smallestDivisorGr1(N) + (K - 1) * 2;
    }
    return N;
}
 
// Driver code
static public void Main()
{
    int N = 6, K = 4;
  
    Console.Write(findValOfNWithOperat(N, K));
}
}
 
// This code is contributed by Khushboogoyal499


Javascript




<script>
 
// Function to find the smallest
// divisor of N greater than 1
function smallestDivisorGr1( N)
{
    for (var i = 2; i <= Math.sqrt(N);
        i++) {
 
        // If i is a divisor
        // of N
        if (N % i == 0) {
            return i;
        }
    }
 
    // If N is a prime number
    return N;
}
 
// Function to find the value of N by
// performing the operations K times
function findValOfNWithOperat(N, K)
{
    // If N is an even number
    if (N % 2 == 0) {
 
        // Update N
        N += K * 2;
    }
 
    // If N is an odd number
    else {
 
        // Update N
        N += smallestDivisorGr1(N)
            + (K - 1) * 2;
    }
 
    return N;
}
 
// Driver Code
var N = 6, K = 4;
 
    document.write(findValOfNWithOperat(N, K));
 
 
 
</script>


Output: 

14

 

Time Complexity: O(?N) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
11 Oct, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments