Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum addition/removal of characters to be done to make frequency of each...

Minimum addition/removal of characters to be done to make frequency of each character prime

Given a string S of length N, the task is to find the minimum operations required to make the frequency of every distinct character prime. The frequency of a character can be increased or decreased by 1 in a single operation.

Examples: 

Input: S = “abba” 
Output:
Explanation: There are two characters in the string S and the frequency of ‘a’ is 2 which is prime. The frequency of ‘b’ is 2 which is also a prime number.Hence no operations are required for this case.

Input: S = “aaaaaaaaa” 
Output:
Explanation: The frequency of ‘a’ in the string is 9. Either remove 2 a’s from the string or add 2 a’s in the string to make the frequency of ‘a’ prime. Thus, the minimum number of operations needed is 2. 

Naive Approach: 
Find the frequency of each character in the string. Let the frequency be X. Find the prime number greater than X and less than X. Compare the difference between X and the two prime numbers found and choose the closest prime number. Add the difference between the closest prime number and X to the number of operations. Thus, the minimum number of operations will be obtained. It is an inefficient approach as the lower and upper bounds to find the prime number are not known.

Efficient Approach: 

  1. Use the sieve algorithm to find all the prime numbers up to N and store them in an array.
  2. Find out the nearest lower prime number for all the numbers from i = 1 to N and store the difference between i and its nearest lower prime number in an array, say arr1[].
  3. Find out the nearest higher prime number for all the numbers from i = 1 to N and store the difference between i and its nearest higher prime number in an array, say arr2[].
  4. Traverse the string and find the frequency of all the distinct characters in the string and use an unordered_map to save the frequencies of these distinct characters.
  5. Let the frequency of any distinct character be X, then find out the distance between X and the nearest prime number from the arrays arr1[] and arr2[].
  6. Choose the distance which is less between the two and add this distance to the number of operations.
  7. Do this for all the distinct characters and print the number of operations finally.

Below is the implementation of the above approach: 

C++




// C++ code for the above approach
 
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
 
// using the sieve to find
// the prime factors.
void spf_array(int spf[], int d)
{
    spf[1] = 1;
    int i = 0;
 
    // setting every number
    // as prime number initially
    for (i = 2; i <= d; i++) {
        spf[i] = i;
    }
 
    // removing the even numbers as
    // they cannot be prime except 2
    for (i = 2; i <= d; i = i + 2) {
        spf[i] = 2;
    }
 
    for (i = 3; i * i <= d; i++) {
        // if they are prime
        if (spf[i] == i) {
            int j;
 
            // iterating the loop for
            // prime and eliminate all
            // the multiples of three
            for (j = i * i; j <= d; j = j + i) {
                if (spf[j] == j) {
                    spf[j] = i;
                }
            }
        }
    }
}
 
// function to find the closest
// prime number of every
// number upto N (size of the string)
void closest_prime_spf(int spf[],
                       int cspf[], int d)
{
    // for the base case
    cspf[1] = 1;
 
    int i = 0, j = 0, k = 0;
 
    // iterating to find the
    // distance from the
    // lesser nearest prime
    for (i = 2; i < d; i++) {
        if (spf[i] != i) {
            cspf[i] = abs(i - k);
        }
        else {
            cspf[i] = -1;
            k = i;
        }
    }
 
    // iterating to find the
    // distance from the
    // lesser nearest prime
    for (i = d - 1; i >= 2; i--) {
        if (spf[i] != i) {
            if (cspf[i] > abs(k - i)) {
                cspf[i] = abs(k - i);
            }
        }
        else {
            k = i;
        }
    }
}
 
// function to find the
// minimum operation
int minimum_operation(int cspf[],
                      string s)
{
 
    // created map to find the
    // frequency of distinct characters
    unordered_map<char, int> m;
 
    // variable to iterate and
    // holding the minimum operation
    int i = 0, k = 0;
 
    // loop for calculation frequency
    for (i = 0; i < s.length(); i++) {
        m[s[i]] = m[s[i]] + 1;
    }
 
    // iterate over frequency
    // if we not get a character
    // frequency prime
    // then we find the closest
    // prime and add
    for (auto x : m) {
        int h = x.second;
        if (cspf[h] != -1) {
            k = k + cspf[h];
        }
    }
    return k;
}
 
// Function to find the
// minimum number of operations
void minOper(string s)
{
 
    int spf[s.length() + 1];
    int cspf[s.length() + 1];
 
    // function called to create
    // the spf
    spf_array(spf, s.length() + 1);
 
    // function called to
    // create the cspf
    closest_prime_spf(spf, cspf,
                      s.length() + 1);
 
    cout << minimum_operation(cspf, s)
         << endl;
}
 
// Driver Code
int main()
{
    // input string
    string s = "aaaaaaaaabbcccccc";
 
    minOper(s);
 
    return 0;
}


Java




// Java code for the above approach
import java.util.*;
 
class GFG{
 
// Using the sieve to find
// the prime factors.
static void spf_array(int spf[], int d)
{
    spf[1] = 1;
    int i = 0;
 
    // Setting every number
    // as prime number initially
    for(i = 2; i < d; i++)
    {
        spf[i] = i;
    }
 
    // Removing the even numbers as
    // they cannot be prime except 2
    for(i = 2; i < d; i = i + 2)
    {
        spf[i] = 2;
    }
 
    for(i = 3; i * i <= d; i++)
    {
         
        // If they are prime
        if (spf[i] == i)
        {
            int j;
 
            // Iterating the loop for
            // prime and eliminate all
            // the multiples of three
            for(j = i * i; j < d; j = j + i)
            {
                if (spf[j] == j)
                {
                    spf[j] = i;
                }
            }
        }
    }
}
 
// Function to find the closest
// prime number of every
// number upto N (size of the String)
static void closest_prime_spf(int spf[],
                              int cspf[],
                              int d)
{
     
    // For the base case
    cspf[1] = 1;
 
    int i = 0, k = 0;
 
    // Iterating to find the
    // distance from the
    // lesser nearest prime
    for(i = 2; i < d; i++)
    {
        if (spf[i] != i)
        {
            cspf[i] = Math.abs(i - k);
        }
        else
        {
            cspf[i] = -1;
            k = i;
        }
    }
 
    // Iterating to find the
    // distance from the
    // lesser nearest prime
    for(i = d - 1; i >= 2; i--)
    {
        if (spf[i] != i)
        {
            if (cspf[i] > Math.abs(k - i))
            {
                cspf[i] = Math.abs(k - i);
            }
        }
        else
        {
            k = i;
        }
    }
}
 
// Function to find the
// minimum operation
static int minimum_operation(int cspf[],
                             String s)
{
     
    // Created map to find the
    // frequency of distinct characters
    HashMap<Character, Integer> m = new HashMap<>();
 
    // Variable to iterate and
    // holding the minimum operation
    int i = 0, k = 0;
 
    // Loop for calculation frequency
    for(i = 0; i < s.length(); i++)
    {
        if (m.containsKey(s.charAt(i)))
            m.put(s.charAt(i),
            m.get(s.charAt(i)) + 1);
        else
            m.put(s.charAt(i), 1);
    }
 
    // Iterate over frequency
    // if we not get a character
    // frequency prime then we
    // find the closest
    // prime and add
    for(Map.Entry<Character,
                  Integer> x : m.entrySet())
    {
        int h = x.getValue();
        if (cspf[h] != -1)
        {
            k = k + cspf[h];
        }
    }
    return k;
}
 
// Function to find the
// minimum number of operations
static void minOper(String s)
{
    int []spf = new int[s.length() + 1];
    int []cspf = new int[s.length() + 1];
 
    // Function called to create
    // the spf
    spf_array(spf, s.length() + 1);
 
    // Function called to
    // create the cspf
    closest_prime_spf(spf, cspf,
                      s.length() + 1);
 
    System.out.print(minimum_operation(cspf, s) + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Input String
    String s = "aaaaaaaaabbcccccc";
 
    minOper(s);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 code for the above approach
from collections import defaultdict
 
# Using the sieve to find
# the prime factors.
def spf_array(spf, d):
 
    spf[1] = 1
    i = 0
     
    # Setting every number as prime
    # number initially and remove
    # even numbers as 2 as they
    # cannot be prime except 2
    for i in range(2, d + 1):
        if (i % 2 == 0):
          spf[i] = 2
        else:
          spf[i] = i
    
    i = 3
    while i * i <= d:
         
        # If they are prime
        if (spf[i] == i):
         
            # Iterating the loop for
            # prime and eliminate all
            # the multiples of three
            j = i * i
            while j < d + 1:
                if (spf[j] == j):
                    spf[j] = i
                     
                j = j + i
                 
        i += 1
               
# Function to find the closest
# prime number of every number
# upto N (size of the string)
def closest_prime_spf(spf, cspf, d):
     
    # For the base case
    cspf[1] = 1
     
    i = 0
    j = 0
    k = 0
     
    # Iterating to find the
    # distance from the
    # lesser nearest prime
    for i in range(2, d):
        if (spf[i] != i):
            cspf[i] = abs(i - k)
        else:
            cspf[i] = -1
            k = i
     
    # Iterating to find the
    # distance from the
    # lesser nearest prime
    for i in range(d - 1, 1, -1):
        if (spf[i] != i):
            if (cspf[i] > abs(k - i)):
                cspf[i] = abs(k - i)
        else:
            k = i
           
# Function to find the
# minimum operation
def minimum_operation(cspf, s):
 
    # Created map to find the
    # frequency of distinct characters
    m = defaultdict(int)
 
    # Variable to iterate and
    # holding the minimum operation
    i = 0
    k = 0
 
    # Loop for calculation frequency
    for i in range(len(s)):
        m[s[i]] = m[s[i]] + 1
       
    # Iterate over frequency if we
    # not get a character frequency
    # prime then we find the closest
    # prime and add
    #print (cspf)
    for x in m.values():
        h = x
         
        if (cspf[h] != -1):
            k = k + cspf[h]
   
    return k
 
# Function to find the
# minimum number of operations
def minOper(s):
           
    spf = [0] * (len(s) + 2)
    cspf = [0] * (len(s) + 2)
 
    # Function called to create
    # the spf
    spf_array(spf, len(s) + 1)
 
    # Function called to
    # create the cspf
    closest_prime_spf(spf, cspf,
                      len(s) + 1)
 
    print(minimum_operation(cspf, s))
       
# Driver Code
if __name__ == "__main__":
     
    # Input string
    s = "aaaaaaaaabbcccccc"
 
    minOper(s)
 
# This code is contributed by chitranayal


C#




// C# code for the
// above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Using the sieve to find
// the prime factors.
static void spf_array(int []spf,
                      int d)
{
  spf[1] = 1;
  int i = 0;
 
  // Setting every number
  // as prime number initially
  for(i = 2; i < d; i++)
  {
    spf[i] = i;
  }
 
  // Removing the even numbers as
  // they cannot be prime except 2
  for(i = 2; i < d; i = i + 2)
  {
    spf[i] = 2;
  }
 
  for(i = 3; i * i <= d; i++)
  {
    // If they are prime
    if (spf[i] == i)
    {
      int j;
 
      // Iterating the loop for
      // prime and eliminate all
      // the multiples of three
      for(j = i * i; j < d; j = j + i)
      {
        if (spf[j] == j)
        {
          spf[j] = i;
        }
      }
    }
  }
}
 
// Function to find the closest
// prime number of every
// number upto N (size of the String)
static void closest_prime_spf(int []spf,
                              int []cspf,
                              int d)
{   
  // For the base case
  cspf[1] = 1;
 
  int i = 0, k = 0;
 
  // Iterating to find the
  // distance from the
  // lesser nearest prime
  for(i = 2; i < d; i++)
  {
    if (spf[i] != i)
    {
      cspf[i] = Math.Abs(i - k);
    }
    else
    {
      cspf[i] = -1;
      k = i;
    }
  }
 
  // Iterating to find the
  // distance from the
  // lesser nearest prime
  for(i = d - 1; i >= 2; i--)
  {
    if (spf[i] != i)
    {
      if (cspf[i] > Math.Abs(k - i))
      {
        cspf[i] = Math.Abs(k - i);
      }
    }
    else
    {
      k = i;
    }
  }
}
 
// Function to find the
// minimum operation
static int minimum_operation(int []cspf,
                             String s)
{
 
  // Created map to find the
  // frequency of distinct characters
  Dictionary<char,
             int> m = new Dictionary<char,
                                     int>();
   
  // Variable to iterate and
  // holding the minimum operation
  int i = 0, k = 0;
 
  // Loop for calculation
  // frequency
  for(i = 0; i < s.Length; i++)
  {
    if (m.ContainsKey(s[i]))
      m[s[i]] = m[s[i]] + 1;
    else
      m.Add(s[i], 1);
  }
 
  // Iterate over frequency
  // if we not get a character
  // frequency prime then we
  // find the closest
  // prime and add
  foreach(KeyValuePair<char,
                       int> x in m)
  {
    int h = x.Value;
    if (cspf[h] != -1)
    {
      k = k + cspf[h];
    }
  }
  return k;
}
 
// Function to find the
// minimum number of operations
static void minOper(String s)
{
  int []spf = new int[s.Length + 1];
  int []cspf = new int[s.Length + 1];
 
  // Function called to create
  // the spf
  spf_array(spf, s.Length + 1);
 
  // Function called to
  // create the cspf
  closest_prime_spf(spf, cspf,
                    s.Length + 1);
 
  Console.Write(minimum_operation(
                cspf, s) + "\n");
}
 
// Driver Code
public static void Main(String[] args)
{
  // Input String
  String s = "aaaaaaaaabbcccccc";
 
  minOper(s);
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
      // JavaScript code for the
      // above approach
      // Using the sieve to find
      // the prime factors.
      function spf_array(spf, d) {
        spf[1] = 1;
        var i = 0;
 
        // Setting every number
        // as prime number initially
        for (i = 2; i < d; i++) {
          spf[i] = i;
        }
 
        // Removing the even numbers as
        // they cannot be prime except 2
        for (i = 2; i < d; i = i + 2) {
          spf[i] = 2;
        }
 
        for (i = 3; i * i <= d; i++) {
          // If they are prime
          if (spf[i] === i) {
            var j;
 
            // Iterating the loop for
            // prime and eliminate all
            // the multiples of three
            for (j = i * i; j < d; j = j + i) {
              if (spf[j] === j) {
                spf[j] = i;
              }
            }
          }
        }
      }
 
      // Function to find the closest
      // prime number of every
      // number upto N (size of the String)
      function closest_prime_spf(spf, cspf, d) {
        // For the base case
        cspf[1] = 1;
 
        var i = 0,
          k = 0;
 
        // Iterating to find the
        // distance from the
        // lesser nearest prime
        for (i = 2; i < d; i++) {
          if (spf[i] !== i) {
            cspf[i] = Math.abs(i - k);
          } else {
            cspf[i] = -1;
            k = i;
          }
        }
 
        // Iterating to find the
        // distance from the
        // lesser nearest prime
        for (i = d - 1; i >= 2; i--) {
          if (spf[i] !== i) {
            if (cspf[i] > Math.abs(k - i)) {
              cspf[i] = Math.abs(k - i);
            }
          } else {
            k = i;
          }
        }
      }
 
      // Function to find the
      // minimum operation
      function minimum_operation(cspf, s) {
        // Created map to find the
        // frequency of distinct characters
        var m = {};
 
        // Variable to iterate and
        // holding the minimum operation
        var i = 0,
          k = 0;
 
        // Loop for calculation
        // frequency
        for (i = 0; i < s.length; i++) {
          if (m.hasOwnProperty(s[i])) m[s[i]] = m[s[i]] + 1;
          else m[s[i]] = 1;
        }
 
        // Iterate over frequency
        // if we not get a character
        // frequency prime then we
        // find the closest
        // prime and add
        for (const [key, value] of Object.entries(m)) {
          var h = value;
          if (cspf[h] !== -1) {
            k = k + cspf[h];
          }
        }
        return k;
      }
 
      // Function to find the
      // minimum number of operations
      function minOper(s) {
        var spf = new Array(s.length + 1).fill(0);
        var cspf = new Array(s.length + 1).fill(0);
 
        // Function called to create
        // the spf
        spf_array(spf, s.length + 1);
 
        // Function called to
        // create the cspf
        closest_prime_spf(spf, cspf, s.length + 1);
 
        document.write(minimum_operation(cspf, s) + "<br>");
      }
 
      // Driver Code
      // Input String
      var s = "aaaaaaaaabbcccccc";
 
      minOper(s);
    </script>


Output: 

3

 

Time complexity: O(N * log(log(N))) 
Auxiliary Space complexity: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
23 Dec, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments