Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICount numbers from a given range that can be visited moving any...

Count numbers from a given range that can be visited moving any number of steps from the range [L, R]

Given two integers X, Y and a range [L, R], the task is to count the number of integers from the range X and Y (inclusive) that can be visited in any number of steps, starting from X. In each step, it is possible to increase by L to R.

Examples:

Input: X = 1, Y = 10, L = 4, R = 6
Output: 6
Explanation: A total of six points can be visited between [1, 10]: 
 

  1. 1: Starting point
  2. 5: 1 -> 5
  3. 6: 1 -> 6
  4. 7: 1 -> 7
  5. 9: 1 -> 5 -> 9
  6. 10: 1 -> 5 -> 10

Input: X = 3, Y = 12, L = 2, R = 3
Output: 9

Approach: From index i, one can reach anywhere between [i+L, i+R] also similarly for each point j in [i+L, i+R] one can move to [j+L, j+R]. For each index i these reachable ranges can be marked using the difference array. Follow the steps below for the approach.

  • Construct an array say diff_arr[] of large size, to mark the ranges.
  • Initialize a variable say count = 0, to count the reachable points.
  • Initially, make diff_arr[x] = 1 and diff_arr[x+1] = -1 to mark starting point X as visited.
  • Iterate from X to Y and for each i update diff_arr[i] += diff_arr[i-1]  and if diff_arr[i] >= 1 then update diff_arr[i+L] = 1 and diff_arr[i + R + 1] = -1 and count = count + 1.
  • Finally, return the count.

Below is the implementation of the above approach:

C++




// C++ code for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count points from the range [X, Y]
// that can be reached by moving by L or R steps
int countReachablePoints(int X, int Y,
                         int L, int R)
{
 
    // Initialize difference array
    int diff_arr[100000] = { 0 };
 
    // Initialize Count
    int count = 0;
 
    // Marking starting point
    diff_arr[X] = 1;
    diff_arr[X + 1] = -1;
 
    // Iterating from X to Y
    for (int i = X; i <= Y; i++) {
 
        // Accumulate difference array
        diff_arr[i] += diff_arr[i - 1];
 
        // If diff_arr[i] is greater
        // than 1
        if (diff_arr[i] >= 1) {
            // Updating difference array
            diff_arr[i + L] += 1;
            diff_arr[i + R + 1] -= 1;
 
            // Visited point found
            count++;
        }
    }
    return count;
}
 
// Driver Code
int main()
 
{
    // Given Input
    int X = 3, Y = 12, L = 2, R = 3;
 
    // Function Call
    cout << countReachablePoints(X, Y, L, R);
 
    return 0;
}


Java




// Java code for above approach
 
import java.util.*;
 
class GFG{
 
// Function to count points from the range [X, Y]
// that can be reached by moving by L or R steps
static int countReachablePoints(int X, int Y,
                         int L, int R)
{
 
    // Initialize difference array
    int diff_arr[] = new int[100000];
 
    // Initialize Count
    int count = 0;
 
    // Marking starting point
    diff_arr[X] = 1;
    diff_arr[X + 1] = -1;
 
    // Iterating from X to Y
    for (int i = X; i <= Y; i++) {
 
        // Accumulate difference array
        diff_arr[i] += diff_arr[i - 1];
 
        // If diff_arr[i] is greater
        // than 1
        if (diff_arr[i] >= 1) {
            // Updating difference array
            diff_arr[i + L] += 1;
            diff_arr[i + R + 1] -= 1;
 
            // Visited point found
            count++;
        }
    }
    return count;
}
 
// Driver Code
public static void main(String[] args)
 
{
    // Given Input
    int X = 3, Y = 12, L = 2, R = 3;
 
    // Function Call
    System.out.print(countReachablePoints(X, Y, L, R));
 
}
}
 
// This code contributed by shikhasingrajput


Python3




# Python3 code for above approach
 
# Function to count points from the range [X, Y]
# that can be reached by moving by L or R steps
def countReachablePoints(X, Y, L, R):
     
    # Initialize difference array
    diff_arr = [0 for i in range(100000)]
 
    # Initialize Count
    count = 0
 
    # Marking starting point
    diff_arr[X] = 1
    diff_arr[X + 1] = -1
 
    # Iterating from X to Y
    for i in range(X, Y + 1, 1):
         
        # Accumulate difference array
        diff_arr[i] += diff_arr[i - 1]
 
        # If diff_arr[i] is greater
        # than 1
        if (diff_arr[i] >= 1):
             
            # Updating difference array
            diff_arr[i + L] += 1
            diff_arr[i + R + 1] -= 1
 
            # Visited point found
            count += 1
 
    return count
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    X = 3
    Y = 12
    L = 2
    R = 3
 
    # Function Call
    print(countReachablePoints(X, Y, L, R))
     
# This code is contributed by ipg2016107


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count points from the range [X, Y]
// that can be reached by moving by L or R steps
static int countReachablePoints(int X, int Y,
                         int L, int R)
{
 
    // Initialize difference array
    int[] diff_arr= new int[100000];
 
    // Initialize Count
    int count = 0;
 
    // Marking starting point
    diff_arr[X] = 1;
    diff_arr[X + 1] = -1;
 
    // Iterating from X to Y
    for (int i = X; i <= Y; i++) {
 
        // Accumulate difference array
        diff_arr[i] += diff_arr[i - 1];
 
        // If diff_arr[i] is greater
        // than 1
        if (diff_arr[i] >= 1)
        {
           
            // Updating difference array
            diff_arr[i + L] += 1;
            diff_arr[i + R + 1] -= 1;
 
            // Visited point found
            count++;
        }
    }
    return count;
}
// Driver Code
public static void Main()
{
        // Given Input
    int X = 3, Y = 12, L = 2, R = 3;
 
    // Function Call
    Console.Write(countReachablePoints(X, Y, L, R));
}
}
 
// This code is contributed by splevel62.


Javascript




<script>
 
// JavaScript code for above approach
 
// Function to count points from the range [X, Y]
// that can be reached by moving by L or R steps
function countReachablePoints(X, Y, L, R) {
  // Initialize difference array
  let diff_arr = new Array(100000).fill(0);
 
  // Initialize Count
  let count = 0;
 
  // Marking starting point
  diff_arr[X] = 1;
  diff_arr[X + 1] = -1;
 
  // Iterating from X to Y
  for (let i = X; i <= Y; i++) {
    // Accumulate difference array
    diff_arr[i] += diff_arr[i - 1];
 
    // If diff_arr[i] is greater
    // than 1
    if (diff_arr[i] >= 1) {
      // Updating difference array
      diff_arr[i + L] += 1;
      diff_arr[i + R + 1] -= 1;
 
      // Visited point found
      count++;
    }
  }
  return count;
}
 
// Driver Code
 
// Given Input
let X = 3,
  Y = 12,
  L = 2,
  R = 3;
 
// Function Call
document.write(countReachablePoints(X, Y, L, R));
 
</script>


Output: 

9

 

Time Complexity: O(Y – X) 
Auxiliary Space: O(Y)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
05 Aug, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments