A car travels with an average speed of S km/h without any stoppage and with stoppage the speed of car reduces to an average of S1 km/h. The task is to find the time wasted per hour for the stoppage.
Examples:
Input: S = 50, S1 = 30
Output: 24 min
Input: S = 30, S1 = 10
Output: 40 min
Approach: Take the first example,
Speed of car without any stoppage = 50 kmph i.e. 50 km in 60 min.
Speed of car with stoppage = 30 kmph i.e. 30 km in 60 min.
Now, if there will be no stoppage then 30 km can be covered in 36 min.
50 km –> 60 min
30 km –> (60 / 50) * 30 = 36 min
but it takes 60 min.
So, time for stoppage per hour is 60 min – 36 min = 24 min.
This can be calculated using the below formula:
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the time taken // per hour for stoppage int numberOfMinutes( int S, int S1) { int Min = 0; Min = ((S - S1) / floor (S)) * 60; return Min; } // Driver code int main() { int S = 30, S1 = 10; cout << numberOfMinutes(S, S1) << " min" ; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the time taken // per hour for stoppage static int numberOfMinutes( int S, int S1) { int Min = 0 ; Min = ( int ) (((S - S1) / Math.floor(S)) * 60 ); return Min; } // Driver code public static void main(String[] args) { int S = 30 , S1 = 10 ; System.out.println(numberOfMinutes(S, S1) + " min" ); } } // This code is contributed by Princi Singh |
Python3
# Python3 implementation of the approach import math # Function to return the time taken # per hour for stoppage def numberOfMinutes(S, S1): Min = 0 ; Min = ((S - S1) / math.floor(S)) * 60 ; return int ( Min ); # Driver code if __name__ = = '__main__' : S, S1 = 30 , 10 ; print (numberOfMinutes(S, S1), "min" ); # This code is contributed by Rajput-Ji |
C#
// C# implementation of the approach using System; class GFG { // Function to return the time taken // per hour for stoppage static int numberOfMinutes( int S, int S1) { int Min = 0; Min = ( int ) (((S - S1) / Math.Floor(( double )S)) * 60); return Min; } // Driver code public static void Main() { int S = 30, S1 = 10; Console.WriteLine(numberOfMinutes(S, S1) + " min" ); } } // This code is contributed // by Akanksha Rai |
Javascript
<script> // JavaScript implementation of the approach // Function to return the time taken // per hour for stoppage function numberOfMinutes(S, S1) { let Min = 0; Min = ((S - S1) / Math.floor(S)) * 60; return Min; } // Driver code let S = 30, S1 = 10; document.write(numberOfMinutes(S, S1) + " min" ); // This code is contributed by Surbhi Tyagi. </script> |
40 min
Time Complexity: O(1), since there is only basic arithmetic that happens in constant time.
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!