Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIMaximize difference between odd and even indexed array elements by shift operations

Maximize difference between odd and even indexed array elements by shift operations

Given an array arr[] of size N, the task is to maximize the absolute difference between the sum of even indexed elements and the sum of odd indexed elements by left shift or right shift of array elements any number of times.

Examples:

Input: arr[] = {332, 421, 215, 584, 232}
Output: 658
Explanation: 
Convert the array to {233, 421, 152, 845, 223}, 
Sum of odd indexed elements = 608. 
Sum of even indexed elements = 1266.
Therefore, the difference equals 658.

Input: arr[] = {11, 22, 33, 44, 55}
Output: 33

Approach: The idea is to minimize the value of any one of even or odd indexed array elements and maximize that of the other in order to maximize their absolute difference. Follow the steps below to solve the problem:

  • Two possible cases exists. Either to minimize the even indexed array elements and maximize the odd indexed array elements or to minimize the odd indexed array elements and maximize the even indexed array elements.
  • For minimizing an element, apply all the shift operations and take the minimum possible value. Similarly, to maximize an element, apply all the shift operations and take the maximum possible value.
  • Take the maximum difference from both the cases.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to minimize array
// elements by shift operations
int minimize(int n)
{
  int optEle = n;
  string strEle = to_string(n);
 
  // For checking all the
  // left shift operations
  for (int idx = 0; idx < strEle.length();idx++)
  {
 
    // Left shift
    int temp = stoi(strEle.substr(idx) +
                    strEle.substr(0, idx));
 
    // Consider the minimum possible value
    optEle = min(optEle, temp);
  }
 
  return optEle;
}
 
// Function to maximize array
// elements by shift operations
int maximize(int n)
{
  int optEle = n;
  string strEle = to_string(n);
 
  // For checking all the
  // left shift operations
  for (int idx = 0; idx < strEle.length();idx++)
  {
 
    // Left shift
    int temp = stoi(strEle.substr(idx) +
                    strEle.substr(0, idx));
 
    // Consider the maximum possible value
    optEle = max(optEle, temp);
  }
 
  return optEle;
}
 
// Function to maximize the absolute
// difference between even and odd
// indexed array elements
void minimumDifference(int arr[], int N)
{
 
  int caseOne = 0;
  int minVal = 0;
  int maxVal = 0;
 
  // To calculate the difference of
  // odd indexed elements
  // and even indexed elements
  for (int i = 0; i < N; i++)
  {
    if (i % 2 == 0)
      minVal += minimize(arr[i]);
    else
      maxVal += maximize(arr[i]);
  }
  caseOne = abs(maxVal - minVal);
  int caseTwo = 0;
  minVal = 0;
  maxVal = 0;
 
  // To calculate the difference
  // between odd and even indexed
  // array elements
  for (int i = 0; i < N; i++)
  {
 
    if (i % 2 == 0)
      maxVal += maximize(arr[i]);
    else
      minVal += minimize(arr[i]);
    caseTwo = abs(maxVal - minVal);
  }
 
  // Print the maximum value
  cout << max(caseOne, caseTwo) << endl;
}
 
// Driver code
int main()
{
  int arr[] = { 332, 421, 215, 584, 232 };
  int N = sizeof(arr) / sizeof(arr[0]);
  minimumDifference(arr, N);
 
  return 0;
}
 
// This code is contributed by divyesh072019.


Java




// Java program for the above approach
import java.io.*;
class GFG
{
 
  // Function to minimize array
  // elements by shift operations
  static int minimize(int n)
  {
    int optEle = n;
    String strEle = Integer.toString(n);
 
    // For checking all the
    // left shift operations
    for (int idx = 0; idx < strEle.length(); idx++)
    {
 
      // Left shift
      int temp
        = Integer.parseInt(strEle.substring(idx)
                           + strEle.substring(0, idx));
 
      // Consider the minimum possible value
      optEle = Math.min(optEle, temp);
    }
 
    return optEle;
  }
 
  // Function to maximize array
  // elements by shift operations
  static int maximize(int n)
  {
    int optEle = n;
    String strEle = Integer.toString(n);
 
    // For checking all the
    // left shift operations
    for (int idx = 0; idx < strEle.length(); idx++)
    {
 
      // Left shift
      int temp
        = Integer.parseInt(strEle.substring(idx)
                           + strEle.substring(0, idx));
 
      // Consider the maximum possible value
      optEle = Math.max(optEle, temp);
    }
    return optEle;
  }
 
  // Function to maximize the absolute
  // difference between even and odd
  // indexed array elements
  static void minimumDifference(int[] arr)
  {
 
    int caseOne = 0;
    int minVal = 0;
    int maxVal = 0;
 
    // To calculate the difference of
    // odd indexed elements
    // and even indexed elements
    for (int i = 0; i < arr.length; i++)
    {
      if (i % 2 == 0)
        minVal += minimize(arr[i]);
      else
        maxVal += maximize(arr[i]);
    }
    caseOne = Math.abs(maxVal - minVal);
    int caseTwo = 0;
    minVal = 0;
    maxVal = 0;
 
    // To calculate the difference
    // between odd and even indexed
    // array elements
    for (int i = 0; i < arr.length; i++)
    {
      if (i % 2 == 0)
        maxVal += maximize(arr[i]);
      else
        minVal += minimize(arr[i]);
      caseTwo = Math.abs(maxVal - minVal);
    }
 
    // Print the maximum value
    System.out.println(Math.max(caseOne, caseTwo));
  }
 
  // Driver Code
  public static void main(String[] args)
  {
 
    // Given array
    int[] arr = { 332, 421, 215, 584, 232 };
    minimumDifference(arr);
  }
}
 
// This code is contributed by Dharanendra L V.


Python3




# Python3 program for the above approach
 
# Function to minimize array
# elements by shift operations
def minimize(n):
  optEle = n
  strEle = str(n)
   
  # For checking all the
  # left shift operations
  for idx in range(len(strEle)):
     
    # Left shift
    temp = int(strEle[idx:] + strEle[:idx])
     
    # Consider the minimum possible value
    optEle = min(optEle, temp)
 
  return optEle
 
# Function to maximize array
# elements by shift operations
def maximize(n):
  optEle = n
  strEle = str(n)
   
  # For checking all the
  # left shift operations
  for idx in range(len(strEle)):
     
    # Left shift
    temp = int(strEle[idx:] + strEle[:idx])
     
    # Consider the maximum possible value
    optEle = max(optEle, temp)
 
  return optEle
 
# Function to maximize the absolute
# difference between even and odd
# indexed array elements
def minimumDifference(arr):
 
  caseOne = 0
  minVal = 0
  maxVal = 0
   
  # To calculate the difference of
  # odd indexed elements
  # and even indexed elements
  for i in range(len(arr)):
    if i % 2:
      minVal += minimize(arr[i])
    else:
      maxVal += maximize(arr[i])
  caseOne = abs(maxVal - minVal)
  caseTwo = 0
  minVal = 0
  maxVal = 0
   
  # To calculate the difference
  # between odd and even indexed
  # array elements
  for i in range(len(arr)):
 
    if i % 2:
      maxVal += maximize(arr[i])
    else:
      minVal += minimize(arr[i])
  caseTwo = abs(maxVal - minVal)
   
  # Print the maximum value
  print (max(caseOne, caseTwo))
     
     
# Given array
arr = [ 332, 421, 215, 584, 232 ]
minimumDifference(arr)


C#




// C# program for the above approach
using System;
class GFG
{
   
    // Function to minimize array
    // elements by shift operations
    static int minimize(int n)
    {
        int optEle = n;
        string strEle = n.ToString();
 
        // For checking all the
        // left shift operations
        for (int idx = 0; idx < strEle.Length;idx++)
        {
 
            // Left shift
            int temp = Int32.Parse(strEle.Substring(idx) +
                                   strEle.Substring(0, idx));
 
            // Consider the minimum possible value
            optEle = Math.Min(optEle, temp);
        }
 
        return optEle;
    }
 
    // Function to maximize array
    // elements by shift operations
    static int maximize(int n)
    {
        int optEle = n;
        string strEle = n.ToString();
 
        // For checking all the
        // left shift operations
        for (int idx = 0; idx < strEle.Length;idx++)
        {
 
            // Left shift
            int temp = Int32.Parse(strEle.Substring(idx) +
                                   strEle.Substring(0, idx));
 
            // Consider the maximum possible value
            optEle = Math.Max(optEle, temp);
        }
 
        return optEle;
    }
 
    // Function to maximize the absolute
    // difference between even and odd
    // indexed array elements
    static void minimumDifference(int[] arr)
    {
 
        int caseOne = 0;
        int minVal = 0;
        int maxVal = 0;
 
        // To calculate the difference of
        // odd indexed elements
        // and even indexed elements
        for (int i = 0; i < arr.Length; i++)
        {
            if (i % 2 == 0)
                minVal += minimize(arr[i]);
            else
                maxVal += maximize(arr[i]);
        }
        caseOne = Math.Abs(maxVal - minVal);
        int caseTwo = 0;
        minVal = 0;
        maxVal = 0;
 
        // To calculate the difference
        // between odd and even indexed
        // array elements
        for (int i = 0; i < arr.Length; i++)
        {
 
            if (i % 2 == 0)
                maxVal += maximize(arr[i]);
            else
                minVal += minimize(arr[i]);
            caseTwo = Math.Abs(maxVal - minVal);
        }
 
        // Print the maximum value
        Console.WriteLine(Math.Max(caseOne, caseTwo));
    }
 
    // Given array
    public static void Main()
    {
        int[] arr = { 332, 421, 215, 584, 232 };
        minimumDifference(arr);
    }
}
 
// This code is contributed by chitranayal.


Javascript




<script>
// Javascript program for the above approach
 
// Function to minimize array
  // elements by shift operations
function minimize(n)
{
    let optEle = n;
    let strEle = (n).toString();
  
    // For checking all the
    // left shift operations
    for (let idx = 0; idx < strEle.length; idx++)
    {
  
      // Left shift
      let temp
        = parseInt(strEle.substring(idx)
                           + strEle.substring(0, idx));
  
      // Consider the minimum possible value
      optEle = Math.min(optEle, temp);
    }
  
    return optEle;
}
 
// Function to maximize array
  // elements by shift operations
function maximize(n)
{
    let optEle = n;
    let strEle = n.toString();
  
    // For checking all the
    // left shift operations
    for (let idx = 0; idx < strEle.length; idx++)
    {
  
      // Left shift
      let temp
        = parseInt(strEle.substring(idx)
                           + strEle.substring(0, idx));
  
      // Consider the maximum possible value
      optEle = Math.max(optEle, temp);
    }
    return optEle;
}
 
// Function to maximize the absolute
  // difference between even and odd
  // indexed array elements
function minimumDifference(arr)
{
    let caseOne = 0;
    let minVal = 0;
    let maxVal = 0;
  
    // To calculate the difference of
    // odd indexed elements
    // and even indexed elements
    for (let i = 0; i < arr.length; i++)
    {
      if (i % 2 == 0)
        minVal += minimize(arr[i]);
      else
        maxVal += maximize(arr[i]);
    }
    caseOne = Math.abs(maxVal - minVal);
    let caseTwo = 0;
    minVal = 0;
    maxVal = 0;
  
    // To calculate the difference
    // between odd and even indexed
    // array elements
    for (let i = 0; i < arr.length; i++)
    {
      if (i % 2 == 0)
        maxVal += maximize(arr[i]);
      else
        minVal += minimize(arr[i]);
      caseTwo = Math.abs(maxVal - minVal);
    }
  
    // Print the maximum value
    document.write(Math.max(caseOne, caseTwo)+"<Br>");
}
 
// Given array
let arr=[332, 421, 215, 584, 232 ];
minimumDifference(arr);
 
 
 
// This code is contributed by avanitrachhadiya2155
</script>


Output: 

658

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
23 Jun, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments