Wednesday, December 25, 2024
Google search engine
HomeData Modelling & AITridecagonal Number

Tridecagonal Number

Given a number N, the task is to find the Nth Tridecagonal number
 

A tridecagonal number is a figurate number that extends the concept of triangular and square numbers to the tridecagon(a thirteen-sided polygon). The Nth tridecagonal number counts the number of dots in a pattern of N nested tridecagons, all sharing a common corner, where the ith tridecagon in the pattern has sides made of ‘i’ dots spaced one unit apart from each other. The first few tridecagonal numbers are 1, 13, 36, 70, 115, 171 … 
 

Examples: 
 

Input: N = 2 
Output: 13 
Explanation: 
The second tridecagonal number is 13.
Input: N = 6 
Output: 171 
 

 

Approach: The Nth tridecagonal number is given by the formula: 
 

Tn = (11n^2 - 9n)/2

Below is the implementation of the above approach:
 

C++




// C++ program to find N-th
// Tridecagonal number
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find N-th
// Tridecagonal number
int Tridecagonal_num(int n)
{
    // Formula to calculate nth
    // Tridecagonal number
    return (11 * n * n - 9 * n) / 2;
}
 
// Driver Code
int main()
{
    int n = 3;
    cout << Tridecagonal_num(n) << endl;
     
    n = 10;
 
    cout << Tridecagonal_num(n) << endl;
 
    return 0;
}


Java




// Java program to find N-th
// tridecagonal number
class GFG{
 
// Function to find N-th
// tridecagonal number
static int Tridecagonal_num(int n)
{
     
    // Formula to calculate nth
    // tridecagonal number
    return (11 * n * n - 9 * n) / 2;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 3;
    System.out.print(Tridecagonal_num(n) + "\n");
     
    n = 10;
    System.out.print(Tridecagonal_num(n) + "\n");
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program to find N-th
# tridecagonal number
 
# Function to find N-th
# tridecagonal number
def Tridecagonal_num(n):
     
    # Formula to calculate nth
    # tridecagonal number
    return (11 * n * n - 9 * n) / 2
 
# Driver Code
n = 3
print(int(Tridecagonal_num(n)))
 
n = 10
print(int(Tridecagonal_num(n)))
 
# This code is contributed by divyeshrabadiya07


C#




// C# program to find N-th
// tridecagonal number
using System;
 
class GFG{
 
// Function to find N-th
// tridecagonal number
static int Tridecagonal_num(int n)
{
     
    // Formula to calculate nth
    // tridecagonal number
    return (11 * n * n - 9 * n) / 2;
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 3;
    Console.Write(Tridecagonal_num(n) + "\n");
     
    n = 10;
    Console.Write(Tridecagonal_num(n) + "\n");
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
    // Javascript program to find N-th
    // Tridecagonal number
     
    // Function to find N-th
    // Tridecagonal number
    function Tridecagonal_num(n)
    {
        // Formula to calculate nth
        // Tridecagonal number
        return (11 * n * n - 9 * n) / 2;
    }
     
    let n = 3;
    document.write(Tridecagonal_num(n) + "</br>");
       
    n = 10;
   
    document.write(Tridecagonal_num(n));
     
</script>


Output: 

36
505

 

Time complexity: O(n) for given n, because constant operations are done

Auxiliary Space: O(1)

Reference: https://en.wikipedia.org/wiki/Polygonal_number

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
19 Sep, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments