Tuesday, December 24, 2024
Google search engine
HomeData Modelling & AICount Arithmetic Progressions having sum S and common difference equal to D

Count Arithmetic Progressions having sum S and common difference equal to D

Given two integers S and D, the task is to count the number of Arithmetic Progressions possible with sum S and common difference D.

Examples:

Input: S = 12, D = 1
Output: 4
Explanation: Following 4 arithmetic progressions with sum 12 and common difference 1 are possible:

  1. {1, 2}
  2. {3, 4, 5}
  3. {-2, -1, 0, 1, 2, 3, 4, 5}
  4. {-11, -10, -9, …, 10, 11, 12}

Input: S = 1, D = 1
Output: 2

Approach: The given problem can be solved based on the following observations:

S = \frac{N}{2}*(2*a + (N - 1)*d)

where, 
S is the sum of the AP series, 
a is the first term of the series, 
N is the number of terms in the series, 
d is a common difference

  • After rearranging the above expressions:

=> 2*S = N*(2*a + (N – 1)*d)      … (1)

=>a = \frac{\frac{2*S}{N} - (N - 1)*d}{2}                …(2)

  • From the above two expressions:
    • The idea is to consider all the factors of 2*S and check if there exists any factor F such that the product of F and (2*a + (F – 1)*d) is equal to 2 * S. If found to be true, then count that factor for one of the possible AP having the given sum S.
    • If there exists any factor F, such that (D * F – (2 * S / F) + D) is divisible by 2, then count that factor for one of the possible AP having the given sum S.

Follow the steps below to solve the problem:

  • Initialize a variable, say answer, to store the count of APs with sum S and common difference D.
  • Iterate over the range [1, ?2*S] and check if 2 * S is divisible by i, then perform the following steps:
    • If the value of ((2 * S / i) + 1 – i * D) is divisible by 2, then increment answer by 1.
    • If the value of (i * D – S / i + 1) is divisible by 2, then increment answer by 1.
  • After completing the above steps, print the value of answer as the resultant count of APs.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of APs
// with sum S and common difference D
int countAPs(int S, int D)
{
    // Multiply S by 2
    S = S * 2;
 
    // Stores the count of APs
    int answer = 0;
 
    // Iterate over the factors of 2*S
    for (int i = 1; i <= sqrt(S); i++) {
 
        // Check if i is the factor
        // or not
        if (S % i == 0) {
 
            // Conditions to check if AP
            // can be formed using factor F
            if (((S / i) - D * i + D) % 2 == 0)
                answer++;
 
            if ((D * i - (S / i) + D) % 2 == 0)
                answer++;
        }
    }
 
    // Return the total count of APs
    return answer;
}
 
// Driver Code
int main()
{
    int S = 12, D = 1;
    cout << countAPs(S, D);
 
    return 0;
}


Java




// Java program for above approach
/*package whatever //do not write package name here */
import java.io.*;
class GFG
{
   
// Function to count the number of APs
// with sum S and common difference D
static int countAPs(int S, int D)
{
   
    // Multiply S by 2
    S = S * 2;
 
    // Stores the count of APs
    int answer = 0;
 
    // Iterate over the factors of 2*S
    for (int i = 1; i <= Math.sqrt(S); i++) {
 
        // Check if i is the factor
        // or not
        if (S % i == 0) {
 
            // Conditions to check if AP
            // can be formed using factor F
            if (((S / i) - D * i + D) % 2 == 0)
                answer++;
 
            if ((D * i - (S / i) + D) % 2 == 0)
                answer++;
        }
    }
 
    // Return the total count of APs
    return answer;
}
 
// Driver code
public static void main(String[] args)
{
    int S = 12, D = 1;
    System.out.println(countAPs(S, D));
}
}
 
// This code is contributed by susmitakundugoaldanga.


Python3




# Python3 program for the above approach
 
# Function to count the number of APs
# with sum S and common difference D
def countAPs(S, D):
   
    # Multiply S by 2
    S = S * 2
 
    # Stores the count of APs
    answer = 0
 
    # Iterate over the factors of 2*S
    for i in range(1, S):
 
        if i * i > S:
            break
             
        # Check if i is the factor
        # or not
        if (S % i == 0):
 
            # Conditions to check if AP
            # can be formed using factor F
            if (((S // i) - D * i + D) % 2 == 0):
                answer += 1
 
            if ((D * i - (S // i) + D) % 2 == 0):
                answer += 1
 
    # Return the total count of APs
    return answer
 
# Driver Code
if __name__ == '__main__':
    S, D = 12, 1
    print(countAPs(S, D));
 
    # This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
 
class GFG{
 
  // Function to count the number of APs
  // with sum S and common difference D
  static int countAPs(int S, int D)
  {
 
    // Multiply S by 2
    S = S * 2;
 
    // Stores the count of APs
    int answer = 0;
 
    // Iterate over the factors of 2*S
    for (int i = 1; i <= Math.Sqrt(S); i++) {
 
      // Check if i is the factor
      // or not
      if (S % i == 0) {
 
        // Conditions to check if AP
        // can be formed using factor F
        if (((S / i) - D * i + D) % 2 == 0)
          answer++;
 
        if ((D * i - (S / i) + D) % 2 == 0)
          answer++;
      }
    }
 
    // Return the total count of APs
    return answer;
  }
 
 
  // Driver code
  static void Main()
  {
    int S = 12, D = 1;
    Console.Write(countAPs(S, D));
  }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count the number of APs
// with sum S and common difference D
function countAPs(S, D)
{
   
    // Multiply S by 2
    S = S * 2;
 
    // Stores the count of APs
    let answer = 0;
 
    // Iterate over the factors of 2*S
    for (let i = 1; i <= Math.sqrt(S); i++) {
 
        // Check if i is the factor
        // or not
        if (S % i == 0) {
 
            // Conditions to check if AP
            // can be formed using factor F
            if (((S / i) - D * i + D) % 2 == 0)
                answer++;
 
            if ((D * i - (S / i) + D) % 2 == 0)
                answer++;
        }
    }
 
    // Return the total count of APs
    return answer;
}
 
// Driver code
     
    let S = 12, D = 1;
    document.write(countAPs(S, D));
     
</script>


Output: 

4

 

Time Complexity: O(?S) 
Auxiliary Space: O(1),  since no extra space has been taken.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
20 Jul, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments