Saturday, November 2, 2024
Google search engine
HomeData Modelling & AICommon nodes in the inorder sequence of a tree between given two...

Common nodes in the inorder sequence of a tree between given two nodes in O(1) space

Given a binary tree consisting of distinct values and two numbers K1 and K2, the task is to find all nodes that lie between them in the inorder sequence of the tree. 
Examples: 
 

Input: 
          1 
        /   \ 
     12    11 
     /       /   \ 
  3    4     13 
         \      / 
       15   9 
k1 = 12 
k2 = 15 
Output: 
1 4 
Explanation: 
Inorder sequence is 3 12 1 4 15 11 9 13 
The common nodes between 12 and 15 in the inorder sequence of the tree are {1, 4}.
Input: 
                  5 
                /   \ 
              21    77 
             /  \      \ 
         61   16    36 
                  \     / 
                10  3 
                / 
             23 
k1 = 23 
k2 = 3 
Output: 
10 5 77 
Explanation: 
Inorder sequence is 61 21 16 23 10 5 77 3 36 
The common nodes between 23 and 3 in the inorder sequence of the tree are {10, 5, 77}. 
 

Approach: 
In order to solve this problem, we are using the Morris Inorder Traversal of a Binary Tree to avoid the use of any extra space. We are keeping a flag to set when either of K1 or K2 is found. Once found, print every node that appears in the inorder sequence until the other node is found.
Below is the implementation of the above approach:
 

C++




// C++ Program to find
// the common nodes
// between given two nodes
// in the inorder sequence
// of the binary tree
 
#include <bits/stdc++.h>
using namespace std;
 
// Definition of Binary
// Tree Structure
struct tNode {
    int data;
    struct tNode* left;
    struct tNode* right;
};
 
// Helper function to allocate
// memory to create new nodes
struct tNode* newtNode(int data)
{
    struct tNode* node = new tNode;
    node->data = data;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
// Flag to set if
// either of K1 or
// K2 is found
int flag = 0;
 
// Function to traverse the
// binary tree without recursion
// and without stack using
// Morris Traversal
void findCommonNodes(struct tNode* root,
                     int K1, int K2)
{
    struct tNode *current, *pre;
 
    if (root == NULL)
        return;
 
    current = root;
    while (current != NULL) {
 
        if (current->left == NULL) {
 
            if (current->data == K1 || current->data == K2) {
                if (flag) {
                    return;
                }
                else {
                    flag = 1;
                }
            }
            else if (flag) {
                cout << current->data << " ";
            }
            current = current->right;
        }
        else {
 
            // Find the inorder predecessor
            // of current
            pre = current->left;
            while (pre->right != NULL
                   && pre->right != current)
                pre = pre->right;
 
            // Make current as the right
            // child of its inorder
            // predecessor
            if (pre->right == NULL) {
                pre->right = current;
                current = current->left;
            }
 
            // Revert the changes made
            // to restore the original tree
            // i.e., fix the right child
            // of predecessor
            else {
                pre->right = NULL;
                if (current->data == K1 || current->data == K2) {
                    if (flag) {
                        return;
                    }
                    else {
                        flag = 1;
                    }
                }
                else if (flag) {
                    cout << current->data << " ";
                }
                current = current->right;
            } // End of if condition pre->right == NULL
        } // End of if condition current->left == NULL
    } // End of while
}
 
// Driver code
int main()
{
    struct tNode* root = newtNode(1);
    root->left = newtNode(12);
    root->right = newtNode(11);
    root->left->left = newtNode(3);
    root->right->left = newtNode(4);
    root->right->right = newtNode(13);
    root->right->left->right = newtNode(15);
    root->right->right->left = newtNode(9);
 
    int K1 = 12, K2 = 15;
 
    findCommonNodes(root, K1, K2);
 
    return 0;
}


Java




// Java program to find the common nodes
// between given two nodes in the inorder
// sequence of the binary tree
import java.util.*;
 
class GFG{
 
// Definition of Binary Tree
static class tNode
{
    int data;
    tNode left;
    tNode right;
};
 
// Helper function to allocate
// memory to create new nodes
static tNode newtNode(int data)
{
    tNode node = new tNode();
    node.data = data;
    node.left = null;
    node.right = null;
 
    return (node);
}
 
// Flag to set if either
// of K1 or K2 is found
static int flag = 0;
 
// Function to traverse the binary
// tree without recursion and
// without stack using
// Morris Traversal
static void findCommonNodes(tNode root,
                            int K1, int K2)
{
    tNode current, pre;
 
    if (root == null)
        return;
    current = root;
     
    while (current != null)
    {
        if (current.left == null)
        {
            if (current.data == K1 ||
                current.data == K2)
            {
                if (flag == 1)
                {
                    return;
                }
                else
                {
                    flag = 1;
                }
            }
            else if (flag == 1)
            {
                System.out.print(current.data + " ");
            }
            current = current.right;
        }
        else
        {
 
            // Find the inorder predecessor
            // of current
            pre = current.left;
            while (pre.right != null &&
                   pre.right != current)
            {
                pre = pre.right;
            }
 
            // Make current as the right
            // child of its inorder
            // predecessor
            if (pre.right == null)
            {
                pre.right = current;
                current = current.left;
            }
 
            // Revert the changes made
            // to restore the original tree
            // i.e., fix the right child
            // of predecessor
            else
            {
                pre.right = null;
                if (current.data == K1 ||
                    current.data == K2)
                {
                    if (flag == 1)
                    {
                        return;
                    }
                    else
                    {
                        flag = 1;
                    }
                }
                else if (flag == 1)
                {
                    System.out.print(current.data + " ");
                }
                current = current.right;
            } // End of if condition pre.right == null
        } // End of if condition current.left == null
    } // End of while
}
 
// Driver code
public static void main(String[] args)
{
    tNode root = newtNode(1);
    root.left = newtNode(12);
    root.right = newtNode(11);
    root.left.left = newtNode(3);
    root.right.left = newtNode(4);
    root.right.right = newtNode(13);
    root.right.left.right = newtNode(15);
    root.right.right.left = newtNode(9);
 
    int K1 = 12, K2 = 15;
 
    findCommonNodes(root, K1, K2);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the
# above approach
from collections import deque
 
# A Tree node
class Node:
   
    def __init__(self, x):
       
        self.data = x
        self.left = None
        self.right = None
 
# Flag to set if
# either of K1 or
# K2 is found
flag = 0
 
# Function to traverse the
# binary tree without recursion
# and without stack using
# Morris Traversal
def findCommonNodes(root,
                    K1, K2):
   
    global flag
    current, pre = None, None
 
    if (root == None):
        return
 
    current = root
    while (current != None):
        if (current.left == None):
            if (current.data == K1 or
                current.data == K2):
                if (flag):
                    return
 
                else:
                    flag = 1
 
            elif (flag):
                print(current.data,
                      end = " ")
            else:
                None
 
            current = current.right
 
        else:
 
            # Find the inorder
            # predecessor of current
            pre = current.left
            while (pre.right != None and
                   pre.right != current):
                pre = pre.right
 
            # Make current as the right
            # child of its inorder
            # predecessor
            if (pre.right == None):
                pre.right = current
                current = current.left
 
            # Revert the changes made
            # to restore the original tree
            # i.e., fix the right child
            # of predecessor
            else:
                pre.right = None
                if (current.data == K1 or
                    current.data == K2):
                    if (flag):
                        return
                    else:
                        flag = 1
 
                elif (flag):
                    print(current.data,
                          end = " ")
 
                current = current.right
             # End of if condition
            # pre.right == None
         # End of if condition
         #current.left == None
     # End of while
 
# Driver code
if __name__ == '__main__':
   
    root = Node(1)
    root.left = Node(12)
    root.right = Node(11)
    root.left.left = Node(3)
    root.right.left = Node(4)
    root.right.right = Node(13)
    root.right.left.right = Node(15)
    root.right.right.left = Node(9)
 
    K1 = 12
    K2 = 15
 
    findCommonNodes(root, K1, K2)
 
# This code is contributed by Mohit Kumar 29


C#




// C# program to find the common nodes
// between given two nodes in the inorder
// sequence of the binary tree
using System;
 
class GFG{
 
// Definition of Binary Tree
class tNode
{
    public int data;
    public tNode left;
    public tNode right;
};
 
// Helper function to allocate
// memory to create new nodes
static tNode newtNode(int data)
{
    tNode node = new tNode();
    node.data = data;
    node.left = null;
    node.right = null;
 
    return (node);
}
 
// Flag to set if either
// of K1 or K2 is found
static int flag = 0;
 
// Function to traverse the binary
// tree without recursion and
// without stack using
// Morris Traversal
static void findCommonNodes(tNode root,
                            int K1, int K2)
{
    tNode current, pre;
 
    if (root == null)
        return;
    current = root;
     
    while (current != null)
    {
        if (current.left == null)
        {
            if (current.data == K1 ||
                current.data == K2)
            {
                if (flag == 1)
                {
                    return;
                }
                else
                {
                    flag = 1;
                }
            }
            else if (flag == 1)
            {
                Console.Write(current.data + " ");
            }
            current = current.right;
        }
        else
        {
 
            // Find the inorder predecessor
            // of current
            pre = current.left;
            while (pre.right != null &&
                   pre.right != current)
            {
                pre = pre.right;
            }
 
            // Make current as the right
            // child of its inorder
            // predecessor
            if (pre.right == null)
            {
                pre.right = current;
                current = current.left;
            }
 
            // Revert the changes made
            // to restore the original tree
            // i.e., fix the right child
            // of predecessor
            else
            {
                pre.right = null;
                if (current.data == K1 ||
                    current.data == K2)
                {
                    if (flag == 1)
                    {
                        return;
                    }
                    else
                    {
                        flag = 1;
                    }
                }
                else if (flag == 1)
                {
                    Console.Write(current.data + " ");
                }
                current = current.right;
            } // End of if condition pre.right == null
        } // End of if condition current.left == null
    } // End of while
}
 
// Driver code
public static void Main(String[] args)
{
    tNode root = newtNode(1);
    root.left = newtNode(12);
    root.right = newtNode(11);
    root.left.left = newtNode(3);
    root.right.left = newtNode(4);
    root.right.right = newtNode(13);
    root.right.left.right = newtNode(15);
    root.right.right.left = newtNode(9);
 
    int K1 = 12, K2 = 15;
 
    findCommonNodes(root, K1, K2);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// Javascript program to find the common nodes
// between given two nodes in the inorder
// sequence of the binary tree
 
// Definition of Binary Tree
class Node
{
 
    // Helper function to allocate
// memory to create new nodes
    constructor(data)
    {
        this.data = data;
        this.left = this.right=null;
    }
     
}
 
// Flag to set if either
// of K1 or K2 is found
let flag = 0;
 
// Function to traverse the binary
// tree without recursion and
// without stack using
// Morris Traversal
function findCommonNodes(root, K1, K2)
{
    let current, pre;
  
    if (root == null)
        return;
    current = root;
      
    while (current != null)
    {
        if (current.left == null)
        {
            if (current.data == K1 ||
                current.data == K2)
            {
                if (flag == 1)
                {
                    return;
                }
                else
                {
                    flag = 1;
                }
            }
            else if (flag == 1)
            {
                document.write(current.data + " ");
            }
            current = current.right;
        }
        else
        {
  
            // Find the inorder predecessor
            // of current
            pre = current.left;
            while (pre.right != null &&
                   pre.right != current)
            {
                pre = pre.right;
            }
  
            // Make current as the right
            // child of its inorder
            // predecessor
            if (pre.right == null)
            {
                pre.right = current;
                current = current.left;
            }
  
            // Revert the changes made
            // to restore the original tree
            // i.e., fix the right child
            // of predecessor
            else
            {
                pre.right = null;
                if (current.data == K1 ||
                    current.data == K2)
                {
                    if (flag == 1)
                    {
                        return;
                    }
                    else
                    {
                        flag = 1;
                    }
                }
                else if (flag == 1)
                {
                    document.write(current.data + " ");
                }
                current = current.right;
            } // End of if condition pre.right == null
        } // End of if condition current.left == null
    } // End of while
}
 
// Driver code
let root = new Node(1);
root.left = new Node(12);
root.right = new Node(11);
root.left.left = new Node(3);
root.right.left = new Node(4);
root.right.right = new Node(13);
root.right.left.right = new Node(15);
root.right.right.left = new Node(9);
 
let K1 = 12, K2 = 15;
findCommonNodes(root, K1, K2);
 
// This code is contributed by patel2127
</script>


Output: 

1 4

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
16 Jun, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments