Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMaximum number of continuous Automorphic numbers

Maximum number of continuous Automorphic numbers

Given an array of N elements. The task is to find the maximum number of the contiguous automorphic numbers in the given array.
Automorphic Numbers: A number is called Automorphic number if and only if its square ends in the same digits as the number itself.

For Example: 

-> 76 is automorphic, since 76*76 = 5776(ends in 76)
-> 5 is automorphic, since 5*5 = 25(ends in 5)

Examples: 

Input :  arr[] = {22, 6, 1, 625, 2, 1, 9376}
Output : 3

Input : arr[] = {99, 42, 31, 1, 5}
Output : 2

Approach:  

  1. Traverse the array with two variables named current_max and max_so_far. Initialize both of them with 0.
  2. Check at each element if it is automorphic. 
    • Calculate the square of current number.
    • Keep extracting and comparing digits from the end of both the current number and its square.
    • If any mismatch is found, then the number is not automorphic.
    • Otherwise if all of the digits from the current number is extracted without any mismatch, then the number is automorphic.
  3. If a automorphic number is found then increment current_max and compare it with max_so_far
  4. If current_max is greater than max_so_far, then assign max_so_far with current_max
  5. Every time a non automorphic element is found, reset current_max to 0.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check Automorphic number
bool isAutomorphic(int N)
{
    // Store the square
    int sq = N * N;
 
    // Start Comparing digits
    while (N > 0) {
 
        // Return false, if any digit of N doesn't
        // match with its square's digits from last
        if (N % 10 != sq % 10)
            return false;
 
        // Reduce N and square
        N /= 10;
        sq /= 10;
    }
 
    return true;
}
 
// Function to find the length of the maximum
// contiguous subarray of automorphic numbers
int maxAutomorphicSubarray(int arr[], int n)
{
    int current_max = 0, max_so_far = 0;
 
    for (int i = 0; i < n; i++) {
 
        // check if element is non automorphic
        if (isAutomorphic(arr[i]) == false)
            current_max = 0;
 
        // If element is automorphic, then update
        // current_max and max_so_far accordingly.
        else {
            current_max++;
            max_so_far = max(current_max, max_so_far);
        }
    }
 
    return max_so_far;
}
 
// Driver Code
int main()
{
    int arr[] = { 0, 3, 2, 5, 1, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << maxAutomorphicSubarray(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
// Function to check Automorphic number
static boolean isAutomorphic(int N)
{
    // Store the square
    int sq = N * N;
 
    // Start Comparing digits
    while (N > 0)
    {
 
        // Return false, if any digit of N doesn't
        // match with its square's digits from last
        if (N % 10 != sq % 10)
            return false;
 
        // Reduce N and square
        N /= 10;
        sq /= 10;
    }
 
    return true;
}
 
// Function to find the length of the maximum
// contiguous subarray of automorphic numbers
static int maxAutomorphicSubarray(int []arr, int n)
{
    int current_max = 0, max_so_far = 0;
 
    for (int i = 0; i < n; i++)
    {
 
        // check if element is non automorphic
        if (isAutomorphic(arr[i]) == false)
            current_max = 0;
 
        // If element is automorphic, then update
        // current_max and max_so_far accordingly.
        else
        {
            current_max++;
            max_so_far = Math.max(current_max,
                                  max_so_far);
        }
    }
 
    return max_so_far;
}
 
// Driver Code
public static void main(String[] args)
{
    int []arr = { 0, 3, 2, 5, 1, 9 };
    int n = arr.length;
 
    System.out.println(maxAutomorphicSubarray(arr, n));
}
}
 
// This code is contributed by Code_Mech.


Python3




# Python3 implementation of the approach
 
# Function to check Automorphic number
def isAutomorphic(N) :
 
    # Store the square
    sq = N * N;
 
    # Start Comparing digits
    while (N > 0) :
 
        # Return false, if any digit of N doesn't
        # match with its square's digits from last
        if (N % 10 != sq % 10) :
            return False;
 
        # Reduce N and square
        N //= 10;
        sq //= 10;
 
    return True;
 
# Function to find the length of the maximum
# contiguous subarray of automorphic numbers
def maxAutomorphicSubarray(arr, n) :
     
    current_max = 0; max_so_far = 0;
 
    for i in range(n) :
 
        # check if element is non automorphic
        if (isAutomorphic(arr[i]) == False) :
            current_max = 0;
 
        # If element is automorphic, then update
        # current_max and max_so_far accordingly.
        else :
            current_max += 1;
            max_so_far = max(current_max,
                             max_so_far);
 
    return max_so_far;
 
# Driver Code
if __name__ == "__main__" :
 
    arr = [ 0, 3, 2, 5, 1, 9 ];
    n = len(arr) ;
 
    print(maxAutomorphicSubarray(arr, n));
 
# This code is contributed by Ryuga


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to check Automorphic number
static bool isAutomorphic(int N)
{
    // Store the square
    int sq = N * N;
 
    // Start Comparing digits
    while (N > 0)
    {
 
        // Return false, if any digit of N doesn't
        // match with its square's digits from last
        if (N % 10 != sq % 10)
            return false;
 
        // Reduce N and square
        N /= 10;
        sq /= 10;
    }
 
    return true;
}
 
// Function to find the length of the maximum
// contiguous subarray of automorphic numbers
static int maxAutomorphicSubarray(int []arr, int n)
{
    int current_max = 0, max_so_far = 0;
 
    for (int i = 0; i < n; i++)
    {
 
        // check if element is non automorphic
        if (isAutomorphic(arr[i]) == false)
            current_max = 0;
 
        // If element is automorphic, then update
        // current_max and max_so_far accordingly.
        else
        {
            current_max++;
            max_so_far = Math.Max(current_max, max_so_far);
        }
    }
 
    return max_so_far;
}
 
// Driver Code
static void Main()
{
    int []arr = { 0, 3, 2, 5, 1, 9 };
    int n = arr.Length;
 
    Console.WriteLine(maxAutomorphicSubarray(arr, n));
 
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP implementation of the approach
 
// Function to check Automorphic number
function isAutomorphic($N)
{
    // Store the square
    $sq = $N * $N;
 
    // Start Comparing digits
    while ($N > 0)
    {
 
        // Return false, if any digit of N doesn't
        // match with its square's digits from last
        if ($N % 10 != $sq % 10)
            return false;
 
        // Reduce N and square
        $N = (int)($N / 10);
        $sq = (int)($sq / 10);
    }
 
    return true;
}
 
// Function to find the length of the maximum
// contiguous subarray of automorphic numbers
function maxAutomorphicSubarray($arr, $n)
{
    $current_max = 0; $max_so_far = 0;
 
    for ($i = 0; $i < $n; $i++)
    {
 
        // check if element is non automorphic
        if (isAutomorphic($arr[$i]) == false)
            $current_max = 0;
 
        // If element is automorphic, then update
        // current_max and max_so_far accordingly.
        else
        {
            $current_max++;
            $max_so_far = max($current_max,
                              $max_so_far);
        }
    }
 
    return $max_so_far;
}
 
// Driver Code
$arr = array(0, 3, 2, 5, 1, 9 );
$n = sizeof($arr);
 
echo(maxAutomorphicSubarray($arr, $n));
 
// This code is contributed by Code_Mech.
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to check Automorphic number
function isAutomorphic(N)
{
     
    // Store the square
    var sq = N * N;
 
    // Start Comparing digits
    while (N > 0)
    {
         
        // Return false, if any digit of N doesn't
        // match with its square's digits from last
        if (N % 10 != sq % 10)
            return false;
 
        // Reduce N and square
        N = parseInt(N / 10);
        sq = parseInt(sq / 10);
    }
    return true;
}
 
// Function to find the length of the maximum
// contiguous subarray of automorphic numbers
function maxAutomorphicSubarray(arr, n)
{
    var current_max = 0, max_so_far = 0;
 
    for(var i = 0; i < n; i++)
    {
         
        // Check if element is non automorphic
        if (isAutomorphic(arr[i]) == false)
            current_max = 0;
 
        // If element is automorphic, then update
        // current_max and max_so_far accordingly.
        else
        {
            current_max++;
            max_so_far = Math.max(current_max,
                                  max_so_far);
        }
    }
    return max_so_far;
}
 
// Driver Code
var arr = [ 0, 3, 2, 5, 1, 9 ];
var n = arr.length;
 
document.write(maxAutomorphicSubarray(arr, n));
 
// This code is contributed by rrrtnx
 
</script>


Output: 

2

 

Time Complexity: O(n * log10m), where n is the size of the given array and m is the maximum element in the array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
18 Nov, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments