Monday, January 13, 2025
Google search engine
HomeData Modelling & AICount Non-Repeating array elements after inserting absolute difference between all possible pairs

Count Non-Repeating array elements after inserting absolute difference between all possible pairs

Given an array arr[] of size N, the task is to maximize the count of distinct array elements by repeatedly inserting the absolute difference between all possible pairs of the given array.

Examples:

Input: arr[] = { 2, 4, 16 }
Output:
Explanation: 
Inserting (arr[2] – arr[1]) modifies arr[] to { 2, 4, 12, 16 } 
Inserting (arr[2] – arr[1]) modifies arr[] to { 2, 4, 8, 12, 16 } 
Inserting (arr[2] – arr[1]) modifies arr[] to { 2, 4, 6, 8, 12, 16 } 
Inserting (arr[4] – arr[0]) modifies arr[] to { 2, 4, 6, 8, 10, 12, 16 } 
Inserting (arr[6] – arr[0]) modifies arr[] to { 2, 4, 6, 8, 10, 12, 14 16 } 
Inserting (arr[2] – arr[0]) modifies arr[] to { 2, 4, 4 6, 8, 10, 12, 14 16 } 
Inserting (arr[2] – arr[1]) modifies arr[] to { 0, 2, 4, 4 6, 8, 10, 12, 14 16 } 
Therefore, the required output is 9.

Input: arr[] = { 3, 6, 5, 4 }
Output: 7

Naive Approach: The simplest approach to solve this problem is to repeatedly select a pair from the given array and insert the absolute difference of that pair. Finally, check if the absolute difference of all possible pairs is already present in the array or not. If found to be true, then print the count of distinct elements into the array. 

Time Complexity: O(N2)
Auxiliary Space: O(N)

Efficient Approach: The idea is to use the fact that the GCD of two numbers can be obtained by repeatedly subtracting the smaller number from the bigger number until two elements become equal. Therefore, insert the elements into the array such that the absolute difference between all the adjacent elements must be equal to the GCD of the array. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the gcd of
// the two numbers
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Function to find distinct elements in the array
// by repeatedly inserting the absolute difference
// of all possible pairs
int DistinctValues(int arr[], int N)
{
 
    // Stores largest element
    // of the array
    int max_value = INT_MIN;
 
    // Traverse the array, arr[]
    for (int i = 0; i < N; ++i) {
 
        // Update max_value
        max_value = max(max_value, arr[i]);
    }
 
    // Stores GCD of array
    int GCDArr = arr[0];
 
    // Traverse the array, arr[]
    for (int i = 1; i < N; ++i) {
 
        // Update GCDArr
        GCDArr = gcd(GCDArr, arr[i]);
    }
 
    // Stores distinct elements in the array by
    // repeatedly inserting absolute difference
    // of all possible pairs
    int answer = (max_value / GCDArr) + 1;
 
    return answer;
}
 
// Driver Code
int main()
{
 
    // Given array arr[]
    int arr[] = { 4, 12, 16, 24 };
 
    int N = sizeof(arr) / sizeof(int);
 
    cout << DistinctValues(arr, N);
 
    return 0;
}
// This code is contributed by hemanth gadarla


Java




// Java program of the above approach
import java.util.*;
class GFG
{
   
// Function to find the gcd of
// the two numbers
static int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Function to find distinct elements in the array
// by repeatidely inserting the absolute difference
// of all possible pairs
static int DistinctValues(int arr[], int N)
{
 
    // Stores largest element
    // of the array
    int max_value = Integer.MIN_VALUE;
 
    // Traverse the array, arr[]
    for (int i = 0; i < N; ++i)
    {
 
        // Update max_value
        max_value = Math.max(max_value, arr[i]);
    }
 
    // Stores GCD of array
    int GCDArr = arr[0];
 
    // Traverse the array, arr[]
    for (int i = 1; i < N; ++i)
    {
 
        // Update GCDArr
        GCDArr = gcd(GCDArr, arr[i]);
    }
 
    // Stores distinct elements in the array by
    // repeatidely inserting absolute difference
    // of all possible pairs
    int answer = (max_value / GCDArr) + 1;
    return answer;
}
    
// Driver code
public static void main(String[] args)
{
   
    // Given array arr[]
    int arr[] = { 4, 12, 16, 24 };
    int N = arr.length;
    System.out.println(DistinctValues(arr, N));
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program of the above approach
import sys
  
# Function to find the gcd of
# the two numbers
def gcd(a, b):
     
    if a == 0:
        return b
         
    return gcd(b % a, a)
 
# Function to find distinct elements in
# the array by repeatidely inserting the
# absolute difference of all possible pairs
def DistinctValues(arr, N):
     
    # Stores largest element
    # of the array
    max_value = -sys.maxsize - 1
     
    # Update max_value
    max_value = max(arr)
 
    # Stores GCD of array
    GCDArr = arr[0]
 
    # Traverse the array, arr[]
    for i in range(1, N):
         
        # Update GCDArr
        GCDArr = gcd(GCDArr, arr[i])
 
     # Stores distinct elements in the array by
     # repeatedely inserting absolute difference
     # of all possible pairs
    answer = max_value // GCDArr
 
    return answer + 1
 
# Driver code
 
# Given array arr[]
arr = [ 4, 12, 16, 24 ]
N = len(arr)
 
print(DistinctValues(arr, N))
 
# This code is contributed by hemanth gadarla


C#




// C# program of the above approach
using System;
class GFG
{
 
  // Function to find the gcd of
  // the two numbers
  static int gcd(int a, int b)
  {
    if (a == 0)
      return b;
    return gcd(b % a, a);
  }
 
  // Function to find distinct elements in the array
  // by repeatidely inserting the absolute difference
  // of all possible pairs
  static int DistinctValues(int[] arr, int N)
  {
 
    // Stores largest element
    // of the array
    int max_value = Int32.MinValue;
 
    // Traverse the array, arr[]
    for (int i = 0; i < N; ++i)
    {
 
      // Update max_value
      max_value = Math.Max(max_value, arr[i]);
    }
 
    // Stores GCD of array
    int GCDArr = arr[0];
 
    // Traverse the array, arr[]
    for (int i = 1; i < N; ++i)
    {
 
      // Update GCDArr
      GCDArr = gcd(GCDArr, arr[i]);
    }
 
    // Stores distinct elements in the array by
    // repeatidely inserting absolute difference
    // of all possible pairs
    int answer = (max_value / GCDArr) + 1;
    return answer;
  }
 
  // Driver code
  static void Main()
  {
 
    // Given array arr[]
    int[] arr = { 4, 12, 16, 24 };
    int N = arr.Length;
    Console.WriteLine(DistinctValues(arr, N));
  }
}
 
// This code is contributed by susmitakundugoaldanga.


Javascript




<script>
// javascript program of the above approach
 
    // Function to find the gcd of
    // the two numbers
    function gcd(a , b) {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Function to find distinct elements in the array
    // by repeatidely inserting the absolute difference
    // of all possible pairs
    function DistinctValues(arr , N) {
 
        // Stores largest element
        // of the array
        var max_value = Number.MIN_VALUE;
 
        // Traverse the array, arr
        for (i = 0; i < N; ++i) {
 
            // Update max_value
            max_value = Math.max(max_value, arr[i]);
        }
 
        // Stores GCD of array
        var GCDArr = arr[0];
 
        // Traverse the array, arr
        for (i = 1; i < N; ++i) {
 
            // Update GCDArr
            GCDArr = gcd(GCDArr, arr[i]);
        }
 
        // Stores distinct elements in the array by
        // repeatidely inserting absolute difference
        // of all possible pairs
        var answer = (max_value / GCDArr) + 1;
        return answer;
    }
 
    // Driver code
     
 
        // Given array arr
        var arr = [ 4, 12, 16, 24 ];
        var N = arr.length;
        document.write(DistinctValues(arr, N));
 
// This code contributed by gauravrajput1
</script>


Output: 

7

 

Time complexity: O(N * Min), where Min is the smallest element of the array 
Auxiliary Space: O(1) 
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
29 Nov, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments