Friday, November 15, 2024
Google search engine
HomeData Modelling & AIMaximize height of tower using elements from one of the given Subarrays

Maximize height of tower using elements from one of the given Subarrays

Given an array arr[] of length N, two arrays start[] and end[] of size M each where {start[i], end[i]} denotes a subarray of arr[] and an integer base, the task is to determine the maximum height of a tower with given base that can be formed using elements from a single subarray bounded by any {start[i], end[i]} and satisfying the following conditions:

  • All elements in each level should be equal.
  • Number of elements in each level is the same as base.
  • No two level can have the same element.

Example to understand the problem

Examples:

Input: N = 9, arr[] = {1, 5, 7, 3, 2, 4, 6, 9, 8}, M = 3, start[] = {0, 3, 5}, end[] =  {8, 5, 6}, base = 1
Output: 9
Explanation: 
First Subarray = {0, 8}. There are 9 different elements. 
Each element can be kept at a different level.
So the height of the tower can be maximum 9 as base is 1. 
Second Subarray = {3, 5}. There are 3 unique elements.
So it will have height 3 at maximum.
Third Subarray = {5, 6}. We can form a tower of max height 2.
The maximum height among all the sub-arrays = 9.

Input: N = 5, arr[] = {1, 3, 3, 7, 5}, M = 2, start[] = {0, 1}, end[] =  {0, 3}, base = 2 
Output: 1
Explanation:
First Subarray = {0, 0}. height = 0 for this sub-array,  
because no tower of base 2 can be formed.
Second Sub-array = {1, 2}. Tower of height 1 can be formed by using 
arr[1] and arr[2] at 1st level of tower.
The maximum height of the tower that can be obtained from all the above subarrays is 1.

Approach: To solve the problem follow the below idea:

Count the frequency of each distinct element for each sub-array using Hash-Map. Initialized current_height a variable to zero, Traverse on Hash-Map and if an element’s frequency is greater than or equal to base then increment the current_height. Print the maximum value of Height H among all the sub-arrays.

Follow the steps to solve the problem:

  • Create a max_height variable and set it as max_height = 0. Then for each sub-array follow these sub-steps:
    • Create a Hash-Map and a current_variable = 0.
    • Count the frequency of each distinct element and store it in Hash-Map as pair of <element, frequency>.
    • While traversing on Hash-Map, if the frequency of a pair in Hash-Map is greater than or equal to the base of Tower, then increment current_height, and if current_height is greater than max_height then update max_height as current_height.
  • Print the value of the max_height variable.

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to obtain Maximum
// height of tower
int Max_height(int n, int arr[], int m,
               int start[], int end[], int base)
{
    // Variable to store Maximum height
    // of tower among all sub-array
    int max_height = 0;
 
    // Loop for obtaining maximum value
    // of H for all sub-arrays
    for (int i = 0; i < m; i++)
    {
 
        // Variable to current height
        // for each sub-array
        int current_height = 0;
 
        // Variable to store start
        // point of each sub-array
        int start_point = start[i];
 
        // Variable to store start
        // point of each sub-array
        int end_point = end[i];
 
        // HashMap initialized to
        // store frequencies
        unordered_map<int, int> map;
 
        // Loop for Traversing
        // on sub-array
        for (int j = start_point; j <= end_point; j++)
        {
 
            // Updating frequencies in
            // Hash-Map for each
            // distinct element present
            // in sub-array
            map[arr[j]]++;
        }
 
        // For loop for traversing
        // on Map
        for (auto it = map.begin(); it != map.end(); it++)
        {
            if (it->second >= base)
            {
 
                // Updating  value of
                // current_height
                current_height++;
 
                // Updating value of
                // max_height by
                // comparing it with
                // current_height
                max_height = current_height > max_height
                                 ? current_height
                                 : max_height;
            }
        }
    }
    // Printing value of max height
    // among all subarrays
    return max_height;
}
// Driver Function
int main()
{
    int N = 9;
    int arr[] = {1, 5, 7, 3, 2, 4, 6, 9, 8};
    int M = 3;
    int start[] = {0, 3, 5};
    int end[] = {8, 5, 6};
    int base = 1;
 
    // Function call
    cout << (Max_height(N, arr, M, start, end, base));
}
// This code is contributed by Potta Lokesh


Java




// Java code to implement the approach
 
import java.util.*;
class GFG {
 
    // Driver Function
    public static void main(String[] args)
    {
        int N = 9;
        int arr[] = { 1, 5, 7, 3, 2, 4, 6, 9, 8 };
        int M = 3;
        int start[] = { 0, 3, 5 };
        int end[] = { 8, 5, 6 };
        int base = 1;
 
        // Function call
        System.out.println(
            Max_height(N, arr, M, start, end, base));
    }
 
    // Function to obtain Maximum
    // height of tower
    static int Max_height(int n, int[] arr, int m,
                          int[] start, int[] end, int base)
    {
        // Variable to store Maximum height
        // of tower among all sub-array
        int max_height = 0;
 
        // Loop for obtaining maximum value
        // of H for all sub-arrays
        for (int i = 0; i < m; i++) {
 
            // Variable to current height
            // for each sub-array
            int current_height = 0;
 
            // Variable to store start
            // point of each sub-array
            int start_point = start[i];
 
            // Variable to store start
            // point of each sub-array
            int end_point = end[i];
 
            // HashMap initialized to
            // store frequencies
            HashMap<Integer, Integer> map = new HashMap<>();
 
            // Loop for Traversing
            // on sub-array
            for (int j = start_point; j <= end_point; j++) {
 
                // Updating frequencies in
                // Hash-Map for each
                // distinct element present
                // in sub-array
                map.put(arr[j], map.get(arr[j]) == null
                                    ? 1
                                    : map.get(arr[j]) + 1);
            }
 
            // For loop for traversing
            // on Map
            for (Map.Entry<Integer, Integer> set :
                 map.entrySet()) {
                if (set.getValue() >= base) {
 
                    // Updating  value of
                    // current_height
                    current_height++;
 
                    // Updating value of
                    // max_height by
                    // comparing it with
                    // current_height
                    max_height = current_height > max_height
                                     ? current_height
                                     : max_height;
                }
            }
        }
        // Printing value of max height
        // among all subarrays
        return max_height;
    }
}


Python3




# Python code to implement the approach
 
# Function to obtain Maximum
# height of tower
def Max_height(n, arr, m, start, end, base):
   
    # Variable to store Maximum height
    # of tower among all sub-array
    max_height = 0
 
    # Loop for obtaining maximum value
    # of H for all sub-arrays
    for i in range(m):
       
        # Variable to current height
        # for each sub-array
        current_height = 0
         
        # Variable to store start
        # point of each sub-array
        start_point = start[i]
         
        # Variable to store start
        # point of each sub-array
        end_point = end[i]
         
        # HashMap initialized to
        # store frequencies
        mp = {}
 
        # Loop for Traversing
        # on sub-array
        for j in range(start_point, end_point+1):
           
            # Updating frequencies in
            # Hash-Map for each
            # distinct element present
            # in sub-array
            if mp.get(arr[j]) == None:
                mp[arr[j]] = 1
            else:
                mp[arr[j]] += 1
                 
        # For loop for traversing
        # on Map
        for first, second in mp.items():
            if (second >= base):
               
                # Updating  value of
                # current_height
                current_height += 1
                 
                # Updating value of
                # max_height by
                # comparing it with
                # current_height
                max_height = current_height if (
                    current_height > max_height) else max_height
 
    # Printing value of max height
    # among all subarrays
    return max_height
 
# Driver Function
if __name__ == "__main__":
    N = 9
    arr = [1, 5, 7, 3, 2, 4, 6, 9, 8]
    M = 3
    start = [0, 3, 5]
    end = [8, 5, 6]
    base = 1
 
    # Function call
    print(Max_height(N, arr, M, start, end, base))
 
# This code is contributed by Rohit Pradhan


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
public class GFG {
 
  static public void Main()
  {
 
    // Code
    int N = 9;
    int[] arr = { 1, 5, 7, 3, 2, 4, 6, 9, 8 };
    int M = 3;
    int[] start = { 0, 3, 5 };
    int[] end = { 8, 5, 6 };
    int Base = 1;
 
    // Function call
    Console.WriteLine(
      Max_height(N, arr, M, start, end, Base));
  }
 
  // Function to obtain Maximum
  // height of tower
  static int Max_height(int n, int[] arr, int m,
                        int[] start, int[] end, int Base)
  {
    // Variable to store Maximum height
    // of tower among all sub-array
    int max_height = 0;
 
    // Loop for obtaining maximum value
    // of H for all sub-arrays
    for (int i = 0; i < m; i++) {
 
      // Variable to current height
      // for each sub-array
      int current_height = 0;
 
      // Variable to store start
      // point of each sub-array
      int start_point = start[i];
 
      // Variable to store start
      // point of each sub-array
      int end_point = end[i];
 
      // HashMap initialized to
      // store frequencies
      Dictionary<int, int> map
        = new Dictionary<int, int>();
 
      // Loop for Traversing
      // on sub-array
      for (int j = start_point; j <= end_point; j++) {
 
        // Updating frequencies in
        // Hash-Map for each
        // distinct element present
        // in sub-array
        if (map.ContainsKey(arr[j])) {
          map[arr[j]] += 1;
        }
        else {
          map[arr[j]] = 1;
        }
      }
 
      // For loop for traversing
      // on Map
      foreach(KeyValuePair<int, int> Set in map)
      {
        if (Set.Value >= Base) {
 
          //Updating  value of
          // current_height
          current_height++;
 
          // Updating value of
          // max_height by
          // comparing it with
          // current_height
          max_height = current_height > max_height
            ? current_height
            : max_height;
        }
      }
    }
    // Printing value of max height
    // among all subarrays
    return max_height;
  }
}
 
// This code is contributed by lokeshmvs21.


Javascript




<script>
 
// Function to obtain Maximum
// height of tower
function Max_height( n, arr, m,
               start,  end, base)
{
    // Variable to store Maximum height
    // of tower among all sub-array
    let max_height = 0;
 
 
    // Loop for obtaining maximum value
    // of H for all sub-arrays
    for (let i = 0; i < m; i++)
    {
 
        // Variable to current height
        // for each sub-array
        let current_height = 0;
 
        // Variable to store start
        // point of each sub-array
        let start_point = start[i];
 
        // Variable to store start
        // point of each sub-array
        let end_point = end[i];
         
        // HashMap initialized to
        // store frequencies
        // unordered_map<int, int> map;
         
        let map = {};
 
        // Loop for Traversing
        // on sub-array
        for (let j = start_point; j <= end_point; j++)
        {
 
            // Updating frequencies in
            // Hash-Map for each
            // distinct element present
            // in sub-array
            if(map[arr[j]]==NaN || map[arr[j]]==undefined)map[arr[j]]=0;
            map[arr[j]]++;
        }
 
        // For loop for traversing
        // on Map
        let count = 0;
        for (var c in map) {
            count = count + 1;
        }
         
        for (let it = start_point; it <=count ; it++)
        {
            if (map[it] >= base)
            {
 
                // Updating  value of
                // current_height
                current_height++;
 
                // Updating value of
                // max_height by
                // comparing it with
                // current_height
                max_height = current_height > max_height
                                 ? current_height
                                 : max_height;
            }
        }
    }
    // Printing value of max height
    // among all subarrays
    return max_height;
}
 
let N = 9;
let arr = [1, 5, 7, 3, 2, 4, 6, 9, 8];
let M = 3;
let start = [0, 3, 5];
let end = [8, 5, 6];
let base = 1;
 
// Function call
console.log(Max_height(N, arr, M, start, end, base));
 
// This code is contributed by akashish__
</script>


Output

9

Time Complexity: O(M*N)
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
24 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments