Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIZig-Zag level order traversal of Binary Tree after every K levels

Zig-Zag level order traversal of Binary Tree after every K levels

Given a binary tree and an integer K, the task is to print the level order traversal in such a way that first K levels are printed from left to right, next K levels are printed from right to left, then next K levels are from left to right and so on.

Examples:

Input: K = 1
                1
             /   \
          2      3
       /  \    /
     4   9  8
Output:

3 2
4 9 8
Explanation: In the above example, first level is printed from left to right
and the second level is printed from right to left, and then last level is
printed from left to right.

Input: K = 3
                                  1 
                              /      \
                           2          3
                        /   \      /    \
                      4     5   6      7
                   /  \    /     \     / 
                 8   9 10    11  12
               /  \            /
           13  14        15

Output:

2 3
4 5 6 7
12 11 10 9 8
15 14 13
Explanation: In the above example, first 3 levels are printed from left to right
and the last 2 levels are printed from right to left.

 

Approach: The solution to the problem is based on the following idea:

Start performing level order traversal on the tree from the left most end. After every K level, change the direction of printing the elements.

For this use stack. When the levels are to be printed from the right keep those values in stack and print the stack elements one by one from top. Because of the last in first out property of stack the elements would printed in reverse order.

Follow the steps mentioned below to implement the above idea:

  • Use queue to perform level order traversal
  • In each level:
    • If it is to be printed from the left, print them and push their child nodes in the queue.
    • If this level is to be printed from the right side push the elements in a stack and print them after the whole level is traversed.
    • If K levels are covered change the direction of printing from the next one.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Binary Tree node
struct Node {
    int data;
    Node *left, *right;
};
 
// Function that returns a new node
Node* newNode(int data)
{
    Node* temp = new Node();
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Function to print the level order of tree
// by reversing the direction of traversal
// after every n levels
void traverse(Node* root, int n)
{
 
    // NULL check
    if (!root)
        return;
 
    // Queue for level order traversal
    queue<Node*> q;
 
    // Stack for
    // reverse level order traversal
    stack<Node*> s;
 
    // For changing the direction
    // of traversal
    bool right2left = false;
 
    // To count number of levels
    int count = 0;
 
    q.push(root);
    while (!q.empty()) {
        int size = q.size();
        count++;
        while (size--) {
            root = q.front();
            q.pop();
 
            // Prints the nodes from
            // left to right
            if (right2left == false)
                cout << root->data << " ";
 
            // Push the nodes into stack
            // for printing from right to left
            else
                s.push(root);
 
            if (root->left)
                q.push(root->left);
            if (root->right)
                q.push(root->right);
        }
 
        // If the condition satisfies
        // prints the nodes from right to left.
        if (right2left == true) {
            while (!s.empty()) {
                cout << s.top()->data << " ";
                s.pop();
            }
        }
 
        // If the count becomes n
        // then reverse the direction
        if (count == n) {
            right2left = !right2left;
 
            // Update the count to 0
            count = 0;
        }
 
        cout << endl;
    }
}
int main()
{
    // Create a Binary Tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
 
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
 
    root->left->left->left = newNode(8);
    root->left->left->right = newNode(9);
    root->left->right->left = newNode(10);
    root->right->left->right = newNode(11);
    root->right->right->left = newNode(12);
 
    root->left->left->right->left
        = newNode(13);
    root->left->left->right->right
        = newNode(14);
    root->right->left->right->left
        = newNode(15);
 
    // Specify K to change the direction
    // after every K levels.
    int K = 3;
    traverse(root, K);
 
    return 0;
}


Java




import java.util.*;
import java.io.*;
 
// Java program for the above approach
class GFG{
 
    // Binary Tree node
    static class Node{
        int data;
        Node left, right;
        Node(int data){
            this.data = data;
            left = null;
            right = null;
        }
    }
 
    // Function to print the level order of tree
    // by reversing the direction of traversal
    // after every n levels.
    public static void traverse(Node root, int n){
        // Null check
        if(root == null){
            return;
        }
 
        // Queue for level order traversal
        Queue<Node> q = new ArrayDeque<Node>();
 
        // Stack for
        // reverse level order traversal
        Stack<Node> s = new Stack<Node>();
 
        // For changing the direction of traversal
        Boolean right2left = false;
 
        // To count number of levels
        int count = 0;
 
        q.add(root);
        while(!q.isEmpty()){
            int size = q.size();
            count++;
            while(size > 0){
                size--;
                root = q.peek();
                q.remove();
 
                // Prints the nodes from left to right
                if(right2left == false){
                    System.out.print(root.data + " ");
                }
 
                // Push the nodes into stack
                // for printing from right to left
                else{
                    s.push(root);
                }
                if(root.left != null){
                    q.add(root.left);
                }
                if(root.right != null){
                    q.add(root.right);
                }
            }
 
            // If the condition satisfies
            // prints the nodes from right to left.
            if(right2left == true){
                while(!s.isEmpty()){
                    Node topElement = s.pop();
                    System.out.print(topElement.data + " ");
                }
            }
 
            // If the count becomes n
            // then reverse the direction
            if(count == n){
                right2left = !right2left;
 
                // Update the count to 0
                count = 0;
            }
 
            System.out.println("");
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
 
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.left = new Node(6);
        root.right.right = new Node(7);
 
        root.left.left.left = new Node(8);
        root.left.left.right = new Node(9);
        root.left.right.left = new Node(10);
        root.right.left.right = new Node(11);
        root.right.right.left = new Node(12);
 
        root.left.left.right.left = new Node(13);
        root.left.left.right.right = new Node(14);
        root.right.left.right.left = new Node(15);
 
        // Specify K to change the direction
        // after every K levels.
        int K = 3;
        traverse(root, K);
    }
}
 
// This code is contributed by subhamgoyal2014.


Python3




# Python code for the above approach
 
# Binary Tree node
class Node:
    def __init__(self, d):
 
        self.data = d
        self.left = None
        self.right = None
 
# Function to print the level order of tree
# by reversing the direction of traversal
# after every n levels
def traverse(root, n):
 
    # NULL check
    if (root == None):
        return
 
    # Queue for level order traversal
    q = []
 
    # Stack for
    # reverse level order traversal
    s =[]
 
    # For changing the direction
    # of traversal
    right2left = False
 
    # To count number of levels
    count = 0
 
    q.append(root)
    while(len(q) != 0):
        size = len(q)
        count += 1
        while (size > 0):
            root = q[0]
            q = q[1:]
 
            # Prints the nodes from
            # left to right
            if (right2left == False):
                print(root.data, end = " ")
 
            # Push the nodes into stack
            # for printing from right to left
            else:
                s.append(root)
 
            if (root.left):
                q.append(root.left)
            if (root.right):
                q.append(root.right)
            size -= 1
 
        # If the condition satisfies
        # prints the nodes from right to left.
        if (right2left == True):
            while (len(s) > 0):
                print(s[-1].data,end = " ")
                s.pop()
 
        # If the count becomes n
        # then reverse the direction
        if (count == n):
            right2left = not right2left
 
            # Update the count to 0
            count = 0
 
        print("")
 
# Create a Binary Tree
root = Node(1)
root.left = Node(2)
root.right = Node(3)
 
root.left.left = Node(4)
root.left.right = Node(5)
root.right.left = Node(6)
root.right.right = Node(7)
 
root.left.left.left = Node(8)
root.left.left.right = Node(9)
root.left.right.left = Node(10)
root.right.left.right = Node(11)
root.right.right.left = Node(12)
 
root.left.left.right.left = Node(13)
root.left.left.right.right = Node(14)
root.right.left.right.left = Node(15)
 
# Specify K to change the direction
# after every K levels.
K = 3
traverse(root, K)
 
# This code is contributed by shinjanpatra


C#




// C# code to implement the above approach
using System;
using System.Collections.Generic;
 
public class Node {
  public int data;
  public Node left, right;
 
  public Node(int item)
  {
    data = item;
    left = right = null;
  }
}
 
public class BinaryTree {
  Node root;
 
  public BinaryTree() { root = null; }
 
  public void Traverse(Node root, int n)
  {
    if (root == null)
      return;
 
    Queue<Node> q = new Queue<Node>();
    Stack<Node> s = new Stack<Node>();
 
    bool right2left = false;
 
    int count = 0;
 
    q.Enqueue(root);
    while (q.Count != 0) {
      int size = q.Count;
      count++;
      while (size-- > 0) {
        root = q.Dequeue();
 
        if (right2left == false)
          Console.Write(root.data + " ");
        else
          s.Push(root);
 
        if (root.left != null)
          q.Enqueue(root.left);
        if (root.right != null)
          q.Enqueue(root.right);
      }
 
      if (right2left == true) {
        while (s.Count != 0) {
          Console.Write(s.Pop().data + " ");
        }
      }
 
      if (count == n) {
        right2left = !right2left;
 
        count = 0;
      }
 
      Console.WriteLine();
    }
  }
 
  public static void Main(string[] args)
  {
    BinaryTree tree = new BinaryTree();
 
    // Create a Binary Tree
    tree.root = new Node(1);
    tree.root.left = new Node(2);
    tree.root.right = new Node(3);
    tree.root.left.left = new Node(4);
    tree.root.left.right = new Node(5);
    tree.root.right.left = new Node(6);
    tree.root.right.right = new Node(7);
    tree.root.left.left.left = new Node(8);
    tree.root.left.left.right = new Node(9);
    tree.root.left.right.left = new Node(10);
    tree.root.right.left.right = new Node(11);
    tree.root.right.right.left = new Node(12);
    tree.root.left.left.right.left = new Node(13);
    tree.root.left.left.right.right = new Node(14);
    tree.root.right.left.right.left = new Node(15);
 
    // Specify K to change the direction
    // after every K levels.
    int K = 3;
    tree.Traverse(tree.root, K);
  }
}
 
// This code is contributed by adityamaharshi21


Javascript




<script>
        // JavaScript code for the above approach
 
// Binary Tree node
class Node {
    constructor(d)
    {
        this.data = d;
        this.left = null;
        this.right = null;
    }
};
 
// Function to print the level order of tree
// by reversing the direction of traversal
// after every n levels
function traverse(root,  n)
{
 
    // NULL check
    if (root==null)
        return;
 
    // Queue for level order traversal
    let q = [];
 
    // Stack for
    // reverse level order traversal
    let s =[];
 
    // For changing the direction
    // of traversal
    let right2left = false;
 
    // To count number of levels
    let count = 0;
 
    q.push(root);
    while (q.length!=0) {
        let size = q.length;
        count++;
        while (size--) {
            root = q[0];
            q.shift(root);
 
            // Prints the nodes from
            // left to right
            if (right2left == false)
                document.write(root.data + " ")
 
            // Push the nodes into stack
            // for printing from right to left
            else
                s.push(root);
 
            if (root.left)
                q.push(root.left);
            if (root.right)
                q.push(root.right);
        }
 
        // If the condition satisfies
        // prints the nodes from right to left.
        if (right2left == true) {
            while (s.length!=0) {
                document.write(s[s.length-1].data + " ")
                s.pop();
            }
        }
 
        // If the count becomes n
        // then reverse the direction
        if (count == n) {
            right2left = !right2left;
 
            // Update the count to 0
            count = 0;
        }
 
       document.write('<br>')
    }
}
 
    // Create a Binary Tree
    let root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
 
    root.left.left = new Node(4);
    root.left.right = new Node(5);
    root.right.left = new Node(6);
    root.right.right = new Node(7);
 
    root.left.left.left = new Node(8);
    root.left.left.right = new Node(9);
    root.left.right.left = new Node(10);
    root.right.left.right = new Node(11);
    root.right.right.left = new Node(12);
 
    root.left.left.right.left
        = new Node(13);
    root.left.left.right.right
        = new Node(14);
    root.right.left.right.left
        = new Node(15);
 
    // Specify K to change the direction
    // after every K levels.
    let K = 3;
    traverse(root, K);
 
   // This code is contributed by Potta Lokesh
    </script>


Output

1 
2 3 
4 5 6 7 
12 11 10 9 8 
15 14 13 

Time Complexity: O(N)  where N is number of nodes
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
06 Apr, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments