Friday, January 3, 2025
Google search engine
HomeData Modelling & AIComposite numbers with digit sum 1

Composite numbers with digit sum 1

Given a range [L, R], the task is to find all the numbers from the range which are composite as well as the eventual sum of their digits is 1.
Examples: 
 

Input: L = 10, R = 100 
Output: 10 28 46 55 64 82 91 100 
10 = 1 + 0 = 1 
28 = 2 + 8 = 10 = 1 + 0 = 1 
… 
91 = 9 + 1 = 10 = 1 + 0 = 1 
100 = 1 + 0 + 0 = 1
Input: L = 250, R = 350 
Output: 253 262 280 289 298 316 325 334 343 
 

 

Approach: For every number in the range check if the number is composite i.e. it has a divisor other than 1 and the number itself. If the current number is a composite number then keep on calculating the sum of its digits until the number is reduced to a single digit, if this digit is 1 then the chosen number is a valid number.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the above approach
#include <iostream>
using namespace std;
 
// Function that returns true if number n
// is a composite number
bool isComposite(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return false;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return true;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return true;
 
    return false;
}
 
// Function that returns true if the eventual
// digit sum of number nm is 1
bool isDigitSumOne(int nm)
{
 
    // Loop till the sum is not single digit number
    while (nm > 9) {
 
        // Initialize the sum as zero
        int sum_digit = 0;
 
        // Find the sum of digits
        while (nm > 0) {
            int digit = nm % 10;
            sum_digit = sum_digit + digit;
            nm = nm / 10;
        }
        nm = sum_digit;
    }
 
    // If sum is eventually 1
    if (nm == 1)
        return true;
    else
        return false;
}
 
// Function to print the required numbers
// from the given range
void printValidNums(int l, int r)
{
    for (int i = l; i <= r; i++) {
 
        // If i is one of the required numbers
        if (isComposite(i) && isDigitSumOne(i))
            cout << i << " ";
    }
}
 
// Driver code
int main(void)
{
    int l = 10, r = 100;
 
    printValidNums(l, r);
 
    return 0;
}


Java




// Java implementation of the above approach
public class GFG {
 
    // Function that returns true if number n
    // is a composite number
    static boolean isComposite(int n)
    {
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return false;
 
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return true;
 
        for (int i = 5; i * i <= n; i = i + 6)
            if (n % i == 0 || n % (i + 2) == 0)
                return true;
 
        return false;
    }
 
    // Function that returns true if the eventual
    // digit sum of number nm is 1
    static boolean isDigitSumOne(int nm)
    {
 
        // Loop till the sum is not single
        // digit number
        while (nm > 9) {
 
            // Initialize the sum as zero
            int sum_digit = 0;
 
            // Find the sum of digits
            while (nm > 0) {
                int digit = nm % 10;
                sum_digit = sum_digit + digit;
                nm = nm / 10;
            }
            nm = sum_digit;
        }
 
        // If sum is eventually 1
        if (nm == 1)
            return true;
        else
            return false;
    }
 
    // Function to print the required numbers
    // from the given range
    static void printValidNums(int l, int r)
    {
        for (int i = l; i <= r; i++) {
 
            // If i is one of the required numbers
            if (isComposite(i) && isDigitSumOne(i))
                System.out.print(i + " ");
        }
    }
 
    // Driver code
    public static void main(String arg[])
    {
        int l = 10, r = 100;
        printValidNums(l, r);
    }
}


Python3




# Python3 implementation of the approach
 
# Function that returns true if number n
# is a composite number
def isComposite(n):
   
    # Corner cases
    if (n <= 1):
        return False
    if (n <= 3):
        return False
   
    # This is checked so that we can skip 
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0):
        return True
    i = 5
    while(i * i <= n):
           
        if (n % i == 0 or n % (i + 2) == 0):
            return True
        i = i + 6
           
    return False
 
# Function that returns true if the eventual
# digit sum of number nm is 1
def isDigitSumOne(nm) :
     
    # Loop till the sum is not single
    # digit number
    while(nm>9) :
         
        # Initialize the sum as zero
        sum_digit = 0
         
        # Find the sum of digits
        while(nm != 0) :
            digit = nm % 10
            sum_digit = sum_digit + digit
            nm = nm // 10
        nm = sum_digit
     
    # If sum is eventually 1
    if(nm == 1):
        return True
    else:
        return False
         
# Function to print the required numbers
# from the given range
def printValidNums(m, n ):
    for i in range(m, n + 1):
         
        # If i is one of the required numbers
        if(isComposite(i) and isDigitSumOne(i)) :
            print(i, end =" ")
 
# Driver code
l = 10
r = 100
printValidNums(m, n)


C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function that returns true if number n
    // is a composite number
    static bool isComposite(int n)
    {
         
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return false;
 
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return true;
 
        for (int i = 5; i * i <= n; i = i + 6)
            if (n % i == 0 || n % (i + 2) == 0)
                return true;
 
        return false;
    }
 
    // Function that returns true if the
    // eventual digit sum of number nm is 1
    static bool isDigitSumOne(int nm)
    {
 
        // Loop till the sum is not single
        // digit number
        while (nm > 9)
        {
 
            // Initialize the sum as zero
            int sum_digit = 0;
 
            // Find the sum of digits
            while (nm > 0)
            {
                int digit = nm % 10;
                sum_digit = sum_digit + digit;
                nm = nm / 10;
            }
            nm = sum_digit;
        }
 
        // If sum is eventually 1
        if (nm == 1)
            return true;
        else
            return false;
    }
 
    // Function to print the required numbers
    // from the given range
    static void printValidNums(int l, int r)
    {
        for (int i = l; i <= r; i++)
        {
 
            // If i is one of the required numbers
            if (isComposite(i) && isDigitSumOne(i))
                Console.Write(i + " ");
        }
    }
 
    // Driver code
    static public void Main ()
    {
        int l = 10, r = 100;
        printValidNums(l, r);
    }
}
 
// This code is contributed by jit_t


PHP




<?php
// PHP implementation of the above approach
 
// Function that returns true if number n
// is a composite number
function isComposite($n)
{
    // Corner cases
    if ($n <= 1)
        return false;
    if ($n <= 3)
        return false;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if ($n % 2 == 0 || $n % 3 == 0)
        return true;
 
    for ($i = 5; $i * $i <= $n; $i = $i + 6)
        if ($n % $i == 0 || $n % ($i + 2) == 0)
            return true;
 
    return false;
}
 
// Function that returns true if the eventual
// digit sum of number nm is 1
function isDigitSumOne($nm)
{
 
    // Loop till the sum is not single
    // digit number
    while ($nm > 9)
    {
 
        // Initialize the sum as zero
        $sum_digit = 0;
 
        // Find the sum of digits
        while ($nm > 0)
        {
            $digit = $nm % 10;
            $sum_digit = $sum_digit + $digit;
            $nm = floor($nm / 10);
        }
        $nm = $sum_digit;
    }
 
    // If sum is eventually 1
    if ($nm == 1)
        return true;
    else
        return false;
}
 
// Function to print the required numbers
// from the given range
function printValidNums($l, $r)
{
    for ($i = $l; $i <= $r; $i++)
    {
 
        // If i is one of the required numbers
        if (isComposite($i) && isDigitSumOne($i))
            echo $i, " ";
    }
}
 
// Driver code
$l = 10; $r = 100;
 
printValidNums($l, $r);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function that returns true if number n
// is a composite number
function isComposite(n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return false;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return true;
 
    for (let i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return true;
 
    return false;
}
 
// Function that returns true if the eventual
// digit sum of number nm is 1
function isDigitSumOne(nm)
{
 
    // Loop till the sum is not single digit number
    while (nm > 9) {
 
        // Initialize the sum as zero
        let sum_digit = 0;
 
        // Find the sum of digits
        while (nm > 0) {
            let digit = nm % 10;
            sum_digit = sum_digit + digit;
            nm = Math.floor(nm / 10);
        }
        nm = sum_digit;
    }
 
    // If sum is eventually 1
    if (nm == 1)
        return true;
    else
        return false;
}
 
// Function to print the required numbers
// from the given range
function printValidNums(l, r)
{
    for (let i = l; i <= r; i++) {
 
        // If i is one of the required numbers
        if (isComposite(i) && isDigitSumOne(i))
            document.write(i + " ");
    }
}
 
// Driver code
 
    let l = 10, r = 100;
 
    printValidNums(l, r);
 
     
// This code is contributed by Mayank Tyagi
 
</script>


Output: 

10 28 46 55 64 82 91 100

 

Time Complexity: O((r – l) * (sqrt(r – l) + log10(r – l)))

Auxiliary Space: O(1)

Optimizations : We can precompute composite numbers using Sieve Algorithms.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
23 Jun, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments