Friday, January 10, 2025
Google search engine
HomeData Modelling & AIGenerate longest possible array with product K such that each array element...

Generate longest possible array with product K such that each array element is divisible by its previous adjacent element

Given an integer K, the task is to construct an array of maximum length with product of all array elements equal to K, such that each array element except the first one is divisible by its previous adjacent element.
Note: Every array element in the generated array must be greater than 1.

Examples: 

Input: K = 4
Output: {2, 2}
Explanation:
The second element, i.e. arr[1] (= 2) is divisible by the first element, i.e. arr[0] (= 2).
Product of the array elements = 2 * 2 = 4(= K). 
Therefore, the array satisfies the required condition.

Input: K = 23
Output: {23}

 

Approach: The idea to solve this problem is to find all the prime factors of K with their respective powers such that:

prime_factor[1]x * prime_factor[2]y … * primefactor[i]z = K

Follow the steps below to solve this problem:

  • Find the prime factor, say X, with the greatest power, say Y.
  • Then, Y will be the length of the required array.
  • Therefore, construct an array of length Y with all elements in it equal to X.
  • To make the product of array equal to K, multiply the last element by K / X y.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to construct longest array
// with product K such that each element
// is divisible by its previous element
void findLongestArray(int K)
{
    // Stores the prime factors of K
    vector<pair<int, int> > primefactors;
 
    int K_temp = K;
 
    for (int i = 2; i * i <= K; i++) {
 
        // Stores the power to which
        // primefactor i is raised
        int count = 0;
 
        while (K_temp % i == 0) {
            K_temp /= i;
            count++;
        }
 
        if (count > 0)
            primefactors.push_back({ count, i });
    }
 
    if (K_temp != 1)
        primefactors.push_back(
            { 1, K_temp });
 
    // Sort prime factors in descending order
    sort(primefactors.rbegin(),
         primefactors.rend());
 
    // Stores the final array
    vector<int> answer(
        primefactors[0].first,
        primefactors[0].second);
 
    // Multiply the last element by K
    answer.back() *= K;
 
    for (int i = 0;
         i < primefactors[0].first; i++) {
        answer.back() /= primefactors[0].second;
    }
 
    // Print the constructed array
    cout << "{";
    for (int i = 0; i < (int)answer.size(); i++) {
        if (i == answer.size() - 1)
            cout << answer[i] << "}";
        else
            cout << answer[i] << ", ";
    }
}
 
// Driver Code
int main()
{
    int K = 4;
    findLongestArray(K);
}


Java




// java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
    // Function to construct longest array
    // with product K such that each element
    // is divisible by its previous element
    static void findLongestArray(int K)
    {
        // Stores the prime factors of K
        ArrayList<int[]> primefactors = new ArrayList<>();
 
        int K_temp = K;
 
        for (int i = 2; i * i <= K; i++) {
 
            // Stores the power to which
            // primefactor i is raised
            int count = 0;
 
            while (K_temp % i == 0) {
                K_temp /= i;
                count++;
            }
 
            if (count > 0)
                primefactors.add(new int[] { count, i });
        }
 
        if (K_temp != 1)
            primefactors.add(new int[] { 1, K_temp });
 
        // Sort prime factors in descending order
        Collections.sort(primefactors, (x, y) -> {
            if (x[0] != y[0])
                return y[0] - x[0];
            return y[1] - x[1];
        });
 
        // Stores the final array
        int n = primefactors.get(0)[0];
        int val = primefactors.get(0)[1];
        int answer[] = new int[n];
        Arrays.fill(answer, val);
 
        // Multiply the last element by K
        answer[n - 1] *= K;
 
        for (int i = 0; i < n; i++) {
            answer[n - 1] /= val;
        }
 
        // Print the constructed array
        System.out.print("{");
        for (int i = 0; i < answer.length; i++) {
            if (i == answer.length - 1)
                System.out.print(answer[i] + "}");
            else
                System.out.print(answer[i] + ", ");
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        int K = 4;
        findLongestArray(K);
    }
}
 
// This code is contributed by Kingash.


Python3




# Python 3 program for the above approach
 
# Function to construct longest array
# with product K such that each element
# is divisible by its previous element
def findLongestArray(K):
 
    # Stores the prime factors of K
    primefactors = []
 
    K_temp = K
 
    i = 2
    while i * i <= K:
 
        # Stores the power to which
        # primefactor i is raised
        count = 0
 
        while (K_temp % i == 0):
            K_temp //= i
            count += 1
 
        if (count > 0):
            primefactors.append([count, i])
 
        i += 1
 
    if (K_temp != 1):
        primefactors.append(
            [1, K_temp])
 
    # Sort prime factors in descending order
    primefactors.sort()
 
    # Stores the final array
    answer = [primefactors[0][0],
              primefactors[0][1]]
 
    # Multiply the last element by K
    answer[-1] *= K
 
    for i in range(primefactors[0][0]):
        answer[-1] //= primefactors[0][1]
 
    # Print the constructed array
    print("{", end = "")
    for i in range(len(answer)):
        if (i == len(answer) - 1):
            print(answer[i], end = "}")
        else:
            print(answer[i], end = ", ")
 
# Driver Code
if __name__ == "__main__":
    K = 4
    findLongestArray(K)
 
    # This code is contributed by ukasp.


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
namespace ConsoleApp
{
  class Program
  {
    // Function to construct longest array
    // with product K such that each element
    // is divisible by its previous element
    static void FindLongestArray(int K)
    {
      // Stores the prime factors of K
      List<int[]> primefactors = new List<int[]>();
 
      int K_temp = K;
 
      for (int i = 2; i * i <= K; i++)
      {
        // Stores the power to which
        // primefactor i is raised
        int count = 0;
 
        while (K_temp % i == 0)
        {
          K_temp /= i;
          count++;
        }
 
        if (count > 0)
          primefactors.Add(new int[] { count, i });
      }
 
      if (K_temp != 1)
        primefactors.Add(new int[] { 1, K_temp });
 
      // Sort prime factors in descending order
      primefactors = primefactors.OrderByDescending(x => x[0]).ThenByDescending(y => y[1]).ToList();
 
      // Stores the final array
      int n = primefactors[0][0];
      int val = primefactors[0][1];
      int[] answer = new int[n];
      for (int i = 0; i < answer.Length; i++)
      {
        answer[i] = val;
      }
 
      // Multiply the last element by K
      answer[n - 1] *= K;
 
      for (int i = 0; i < n; i++)
      {
        answer[n - 1] /= val;
      }
 
      // Print the constructed array
      Console.Write("{");
      for (int i = 0; i < answer.Length; i++)
      {
        if (i == answer.Length - 1)
          Console.Write(answer[i] + "}");
        else
          Console.Write(answer[i] + ", ");
      }
    }
 
    // Driver Code
    static void Main(string[] args)
    {
      int K = 4;
      FindLongestArray(K);
    }
  }
}
 
// This code is contributed by phasing17.


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to construct longest array
    // with product K such that each element
    // is divisible by its previous element
function findLongestArray(K)
{
    // Stores the prime factors of K
        let primefactors = [];
  
        let K_temp = K;
  
        for (let i = 2; i * i <= K; i++) {
  
            // Stores the power to which
            // primefactor i is raised
            let count = 0;
  
            while (K_temp % i == 0) {
                K_temp = Math.floor(K_temp/i);
                count++;
            }
  
            if (count > 0)
                primefactors.push([ count, i ]);
        }
  
        if (K_temp != 1)
            primefactors.push([ 1, K_temp ]);
  
        // Sort prime factors in descending order
        primefactors.sort(function(x, y) {
            if (x[0] != y[0])
                return y[0] - x[0];
            return y[1] - x[1];
        });
  
        // Stores the final array
        let n = primefactors[0][0];
        let val = primefactors[0][1];
        let answer = new Array(n);
        for(let i=0;i<n;i++)
        {
            answer[i]=val;
        }
  
        // Multiply the last element by K
        answer[n - 1] *= K;
  
        for (let i = 0; i < n; i++) {
            answer[n - 1] = Math.floor(answer[n - 1]/val);
        }
  
        // Print the constructed array
        document.write("{");
        for (let i = 0; i < answer.length; i++) {
            if (i == answer.length - 1)
                document.write(answer[i] + "}");
            else
                document.write(answer[i] + ", ");
        }
}
 
// Driver Code
let K = 4;
findLongestArray(K);
 
// This code is contributed by avanitrachhadiya2155
 
</script>


 
 

Output: 

{2, 2}

 

Time Complexity: O(√(K) * log(√(K)))
Auxiliary Space: O(√(K)) 

Last Updated :
04 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments