Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMaximize point to reduce Array by replacing Subarray with its sum

Maximize point to reduce Array by replacing Subarray with its sum

Given an array arr[] of size, N, the task is to maximize the score to reduce the array to a single element by replacing any subarray with its sum where the score of one such operation is the product of subarray length and the minimum value of that subarray.

Examples:

Input: N = 2, arr[] = {1, 5}
Output: 2
Explanation: Select subarray (0, 1). Then array arr[] become { 6 } and points earned = 2 * min(1, 5) = 2. Total points earned = 2

Input: N = 3, arr[] = {2, 3, 5}
Output: 14
Explanation: First select subarray (0, 1), then array arr[] become { 5, 5 } and points earned = 2 * min(2, 3) = 4. Select subarray (0, 1), then array arr[] become { 10 } and points earned = 2*  min(5, 5) = 10. Total points earned = 4 + 10 =14.

Approach using Prefix Sum and DP (Memoization):

The Basic idea to solve this problem statement is to maintain a prefix sum array and obtain sum between range using DP (memoization).

Let there be three elements in the subarray {a, b, c} with b > a > c.

1st Case: If we include all the element at a time. array becomes {a+b+c}, points reward = 3*min(a, b, c) = 3*c.

2nd Case: Now, take two element at a time, 
First select subarray(1, 2), array becomes (a, b+c), points reward = 2 * min(b, c) = 2*c
Now select subarray(0, 1), array becomes (a+b+c), points reward = 2 * min(a, b+c) = 2*a
Total points obtained = 2*c + 2*a 

Now, points obtained in the 2nd case is more than points obtained in the first case as
a > c So 2*a > c. So it is optimal to not choose all of the three at a time and break it into two parts from b. This can be implemented with the help of dynamic programming to store the maximum possible point for a subarray [i, j] for avoiding repeated calculation.

Follow the steps mentioned below to implement the idea:

  • Create a prefix sum array pre[] to obtain the sum between any range in O(1) time.
  • Create a recursive function that takes i and j as parameters that determines the range of a group.
    • Iterate from k = i to j to partition the given range into two groups.
    • Call the recursive function for these groups.
      • Suppose ans1and ans2 represents the total points obtained from the left and the right part respectively. 
      • Now for the current partition at index k, the potential answer will be ans1 + ans2 + 2* min(left element, right element) as seen from the above discussion.
    • Now left element will be pre[k+1]-pre[i], the right element will be pre[j-1] – pre[k+1], which can be computed in O(1) time from the prefix sum array.
  • The Maximum value obtained for the range 0 to N-1 is the required answer.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// dp array to store repeated state
long long dp[100][100];
 
// Function to find the maximum possible points
long long maxPoint(int i, int j, vector<long long>& arr,
                   vector<long long>& temp)
{
    // Base case
    if (i >= j)
        return 0;
 
    if (j - i == 1)
        return 2 * min(arr[i], arr[j]);
 
    if (dp[i][j] != -1)
        return dp[i][j];
 
    long long ans = 0;
    for (int k = i; k < j; k++) {
 
        // Points rewarded for left subarray
        long long ans1 = maxPoint(i, k, arr, temp);
 
        // Points rewarded for right subarray
        long long ans2 = maxPoint(k + 1, j, arr, temp);
        long long left_element = temp[k + 1] - temp[i];
        long long right_element = temp[j + 1] - temp[k + 1];
        long long total
            = ans1 + ans2
              + min(left_element, right_element) * 2;
 
        // Total points for partition at current index
        ans = max(total, ans);
    }
    // Store the ans in dp state and return the ans
    return dp[i][j] = ans;
}
 
int findMax(vector<long long>& arr, int N)
{
    vector<long long> temp;
    temp.push_back(0);
 
    // To store sum of each elements
    long long s = 0;
    for (int i = 0; i < N; i++) {
        s += arr[i];
        temp.push_back(s);
    }
 
    // Initializing DP array with -1
    memset(dp, -1, sizeof(dp));
    return maxPoint(0, N - 1, arr, temp);
}
 
// Driver Code
int main()
{
    vector<long long> arr = { 2, 3, 5 };
    int N = arr.size();
 
    // Function call
    int ans = findMax(arr, N);
    cout << ans;
 
    return 0;
}


Java




// Java code to implement the approach
public class gfg2
{
 
  // dp array to store repeated state
  static long[][] dp = new long[100][100];
 
  // Function to find the maximum possible points
  static long maxPoint(int i, int j, long[] arr,
                       long[] temp)
  {
    // Base case
    if (i >= j)
      return 0;
 
    if (j - i == 1)
      return 2 * Math.min(arr[i], arr[j]);
 
    if (dp[i][j] != -1)
      return dp[i][j];
 
    long ans = 0;
    for (int k = i; k < j; k++) {
 
      // Points rewarded for left subarray
      long ans1 = maxPoint(i, k, arr, temp);
 
      // Points rewarded for right subarray
      long ans2 = maxPoint(k + 1, j, arr, temp);
      long left_element = temp[k + 1] - temp[i];
      long right_element = temp[j + 1] - temp[k + 1];
      long total
        = ans1 + ans2
        + Math.min(left_element, right_element)
        * 2;
 
      // Total points for partition at current index
      ans = Math.max(total, ans);
    }
    // Store the ans in dp state and return the ans
    return dp[i][j] = ans;
  }
 
  static long findMax(long[] arr, int N)
  {
    // vector<long long> temp;
    // temp.push_back(0);
    long[] temp = new long[N + 1];
    // To store sum of each elements
    long s = 0;
    for (int i = 0; i < N; i++) {
      s += arr[i];
      temp[i + 1] = s;
    }
 
    // Initializing DP array with -1
    for (int i = 0; i < dp.length; i++) {
      for (int j = 0; j < dp[0].length; j++) {
        dp[i][j] = -1;
      }
    }
    return maxPoint(0, N - 1, arr, temp);
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    long[] arr = { 2, 3, 5 };
    int N = arr.length;
 
    // Function call
    long ans = findMax(arr, N);
    System.out.println(ans);
  }
}
 
// This code is contributed by karandeep1234


Python3




#Python code to implement the approach
 
# dp array to store repeated state
dp=[[0 for i in range(100)] for j in range(100)]
 
# Function to find the maximum possible points
def maxPoint(i,j,arr,temp):
    # Base case
    if(i>=j):
        return 0
    if(j-i==1):
        return 2 * min(arr[i], arr[j])
    if(dp[i][j] != -1):
        return dp[i][j]
    ans=0
    for k in range(i,j):
        # Points rewarded for left subarray
        ans1 = maxPoint(i, k, arr, temp)
         
        # Points rewarded for right subarray
        ans2 = maxPoint(k + 1, j, arr, temp)
        left_element = temp[k + 1] - temp[i]
        right_element = temp[j + 1] - temp[k + 1]
        total=ans1 + ans2 + min(left_element, right_element) * 2
         
        # Total points for partition at current index
        ans = max(total, ans)
         
    # Store the ans in dp state and return the ans
    dp[i][j] = ans
    return dp[i][j]
     
def findMax(arr,N):
    temp=[]
    temp.append(0)
     
    # To store sum of each elements
    s=0
    for i in range(N):
        s=s+arr[i]
        temp.append(s)
     
    # Initializing DP array with -1
    for i in range(len(dp)):
        for j in range(len(dp[0])):
            dp[i][j]=-1
             
    return maxPoint(0, N - 1, arr, temp)
     
# Driver Code
arr=[2,3,5]
N=len(arr)
 
# Function call
ans=findMax(arr,N)
print(ans)
 
# This code is contributed by Pushpesh Raj.


C#




// C# code to implement the approach
using System;
 
public class GFG {
 
  // dp array to store repeated state
  static long[, ] dp = new long[100, 100];
 
  // Function to find the maximum possible points
  static long maxPoint(int i, int j, long[] arr,
                       long[] temp)
  {
    // Base case
    if (i >= j)
      return 0;
 
    if (j - i == 1)
      return 2 * Math.Min(arr[i], arr[j]);
 
    if (dp[i, j] != -1)
      return dp[i, j];
 
    long ans = 0;
    for (int k = i; k < j; k++) {
 
      // Points rewarded for left subarray
      long ans1 = maxPoint(i, k, arr, temp);
 
      // Points rewarded for right subarray
      long ans2 = maxPoint(k + 1, j, arr, temp);
      long left_element = temp[k + 1] - temp[i];
      long right_element = temp[j + 1] - temp[k + 1];
      long total
        = ans1 + ans2
        + Math.Min(left_element, right_element)
        * 2;
 
      // Total points for partition at current index
      ans = Math.Max(total, ans);
    }
    // Store the ans in dp state and return the ans
    return dp[i, j] = ans;
  }
 
  static long findMax(long[] arr, int N)
  {
    // vector<long long> temp;
    // temp.push_back(0);
    long[] temp = new long[N + 1];
    // To store sum of each elements
    long s = 0;
    for (int i = 0; i < N; i++) {
      s += arr[i];
      temp[i + 1] = s;
    }
 
    // Initializing DP array with -1
    for (int i = 0; i < dp.GetLength(0); i++) {
      for (int j = 0; j < dp.GetLength(1); j++) {
        dp[i, j] = -1;
      }
    }
    return maxPoint(0, N - 1, arr, temp);
  }
 
  static public void Main()
  {
 
    // Code
    long[] arr = { 2, 3, 5 };
    int N = arr.Length;
 
    // Function call
    long ans = findMax(arr, N);
    Console.WriteLine(ans);
  }
}
 
// This code is contributed by lokeshmvs21.


Javascript




// JavaScript code to implement the approach
 
// dp array to store repeated state
var dp = [];
 
// Function to find the maximum possible points
function maxPoint(i, j, arr, temp) {
    // Base case
    if (i >= j)
        return 0;
 
    if (j - i == 1)
        return 2 * Math.min(arr[i], arr[j]);
 
    if (dp[i][j] != -1)
        return dp[i][j];
 
    var ans = 0;
    for (var k = i; k < j; k++) {
        // Points rewarded for left subarray
        var ans1 = maxPoint(i, k, arr, temp);
         
        // Points rewarded for right subarray
        var ans2 = maxPoint(k + 1, j, arr, temp);
        var left_element = temp[k + 1] - temp[i];
        var right_element = temp[j + 1] - temp[k + 1];
        var total = ans1 + ans2 + Math.min(left_element, right_element) * 2;
         
        // Total points for partition at current index
        ans = Math.max(total, ans);
    }
     
    // Store the ans in dp state and return the ans
    return dp[i][j] = ans;
}
 
function findMax(arr, N) {
    var temp = [];
    temp.push(0);
 
     // To store sum of each elements
    var s = 0;
    for (var i = 0; i < N; i++) {
        s += arr[i];
        temp.push(s);
    }
 
     // Initializing DP array with -1
    for (var i = 0; i < 100; i++) {
        dp[i] = [];
        for (var j = 0; j < 100; j++) {
            dp[i][j] = -1;
        }
    }
 
    return maxPoint(0, N - 1, arr, temp);
}
 
// Driver Code
var arr = [2, 3, 5];
var N = arr.length;
 
// Function call
var ans = findMax(arr, N);
console.log(ans);
 
// This code is contributed by Tapesh(tapeshdua420)


Output

14





Time complexity: O(N2)
Auxiliary space: O(N2)

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Below is the implementation of the code:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum possible points
int findMax(vector<long long>& arr, int N)
{
    vector<long long> temp(N+1, 0);
 
    // To store sum of each element
    long long s = 0;
    for (int i = 0; i < N; i++) {
        s += arr[i];
        temp[i+1] = s;
    }
 
    // Initializing DP array with 0
    vector<vector<long long>> dp(N, vector<long long>(N, 0));
 
    // Fill the DP table using tabulation
    for (int len = 1; len < N; len++) {
        for (int i = 0; i < N-len; i++) {
            int j = i + len;
 
            if (len == 1) {
                dp[i][j] = 2 * min(arr[i], arr[j]);
            } else {
                for (int k = i; k < j; k++) {
                    long long ans1 = dp[i][k];
                    long long ans2 = dp[k+1][j];
                    long long left_element = temp[k+1] - temp[i];
                    long long right_element = temp[j+1] - temp[k+1];
                    long long total = ans1 + ans2 + 2 * min(left_element, right_element);
                    // Total points for partition at current index
                    dp[i][j] = max(dp[i][j], total);
                }
            }
        }
    }
 
    // return the answer
    return dp[0][N-1];
}
 
// Driver code
int main() {
    vector<long long> arr = {2, 3, 5};
    int N = arr.size();
 
    // Function call
    int ans = findMax(arr, N);
    cout << ans;
 
    return 0;
}


Java




import java.util.*;
 
public class MaxPossiblePoints {
     
    static int findMax(List<Long> arr, int N) {
        List<Long> temp = new ArrayList<>(Collections.nCopies(N + 1, 0L));
 
        // To store sum of each element
        long s = 0;
        for (int i = 0; i < N; i++) {
            s += arr.get(i);
            temp.set(i + 1, s);
        }
 
        // Initializing DP array with 0
        long[][] dp = new long[N][N];
 
        // Fill the DP table using tabulation
        for (int len = 1; len < N; len++) {
            for (int i = 0; i < N - len; i++) {
                int j = i + len;
 
                if (len == 1) {
                    dp[i][j] = 2 * Math.min(arr.get(i), arr.get(j));
                } else {
                    for (int k = i; k < j; k++) {
                        long ans1 = dp[i][k];
                        long ans2 = dp[k + 1][j];
                        long leftElement = temp.get(k + 1) - temp.get(i);
                        long rightElement = temp.get(j + 1) - temp.get(k + 1);
                        long total = ans1 + ans2 + 2 * Math.min(leftElement, rightElement);
                        // Total points for partition at the current index
                        dp[i][j] = Math.max(dp[i][j], total);
                    }
                }
            }
        }
 
        // Return the answer
        return (int) dp[0][N - 1];
    }
 
    public static void main(String[] args) {
        List<Long> arr = new ArrayList<>(Arrays.asList(2L, 3L, 5L));
        int N = arr.size();
 
        // Function call
        int ans = findMax(arr, N);
        System.out.println(ans);
    }
}
 
// This code is contributed by Dwaipayan Bandyopadhyay


Python3




# Function to find the maximum possible points
def findMax(arr, N):
    temp = [0] * (N+1)
     
     
    # To store sum of each element
    s = 0
    for i in range(N):
        s += arr[i]
        temp[i+1] = s
     
     
    # Initializing DP array with 0
    dp = [[0] * N for _ in range(N)]
     
     
    # Fill the DP table using tabulation
    for length in range(1, N):
        for i in range(N-length):
            j = i + length
            if length == 1:
                dp[i][j] = 2 * min(arr[i], arr[j])
            else:
                for k in range(i, j):
                    ans1 = dp[i][k]
                    ans2 = dp[k+1][j]
                    left_element = temp[k+1] - temp[i]
                    right_element = temp[j+1] - temp[k+1]
                    total = ans1 + ans2 + 2 * min(left_element, right_element)
                     
                     
                    # Total points for partition at current index
                    dp[i][j] = max(dp[i][j], total)
     
    # Returning result
    return dp[0][N-1]
 
# Test case
arr = [2, 3, 5]
N = len(arr)
 
ans = findMax(arr, N)
print(ans)


C#




using System;
using System.Collections.Generic;
 
class GFG
{
    // Function to find the maximum possible points
    static int findMax(List<long> arr, int N)
    {
        List<long> temp = new List<long>(new long[N + 1]);
 
        // To store sum of each element
        long s = 0;
        for (int i = 0; i < N; i++)
        {
            s += arr[i];
            temp[i + 1] = s;
        }
 
        // Initializing DP array with 0
        long[][] dp = new long[N][];
        for (int i = 0; i < N; i++)
        {
            dp[i] = new long[N];
            for (int j = 0; j < N; j++)
            {
                dp[i][j] = 0;
            }
        }
 
        // Fill the DP table using tabulation
        for (int len = 1; len < N; len++)
        {
            for (int i = 0; i < N - len; i++)
            {
                int j = i + len;
 
                if (len == 1)
                {
                    dp[i][j] = 2 * Math.Min(arr[i], arr[j]);
                }
                else
                {
                    for (int k = i; k < j; k++)
                    {
                        long ans1 = dp[i][k];
                        long ans2 = dp[k + 1][j];
                        long left_element = temp[k + 1] - temp[i];
                        long right_element = temp[j + 1] - temp[k + 1];
                        long total = ans1 + ans2 + 2 * Math.Min(left_element, right_element);
                        // Total points for partition at current index
                        dp[i][j] = Math.Max(dp[i][j], total);
                    }
                }
            }
        }
 
        // return the answer
        return (int)dp[0][N - 1];
    }
 
    // Driver code
    static void Main(string[] args)
    {
        List<long> arr = new List<long> { 2, 3, 5 };
        int N = arr.Count;
 
        // Function call
        int ans = findMax(arr, N);
        Console.WriteLine(ans);
    }
}


Javascript




// Function to find the maximum possible points
function findMax(arr, N) {
    let temp = new Array(N + 1).fill(0);
 
 
    // To store sum of each element
    let s = 0;
    for (let i = 0; i < N; i++) {
        s += arr[i];
        temp[i + 1] = s;
    }
 
 
    // Initializing DP array with 0
    let dp = new Array(N);
    for (let i = 0; i < N; i++) {
        dp[i] = new Array(N).fill(0);
    }
 
 
    // Fill the DP table using tabulation
    for (let len = 1; len < N; len++) {
        for (let i = 0; i < N - len; i++) {
            let j = i + len;
            if (len === 1) {
                dp[i][j] = 2 * Math.min(arr[i], arr[j]);
            } else {
                for (let k = i; k < j; k++) {
                    let ans1 = dp[i][k];
                    let ans2 = dp[k + 1][j];
                    let left_element = temp[k + 1] - temp[i];
                    let right_element = temp[j + 1] - temp[k + 1];
                    let total = ans1 + ans2 + 2 * Math.min(left_element, right_element);
 
                    // Total points for partition at current index
                    dp[i][j] = Math.max(dp[i][j], total);
                }
            }
        }
    }
 
    // return the answer
    return dp[0][N - 1];
}
 
// test case
let arr = [2, 3, 5];
let N = arr.length;
 
let ans = findMax(arr, N);
console.log(ans);


Output

14





Time complexity: O(N^2)
Auxiliary space: O(N^2)

Related Articles:

Last Updated :
18 Sep, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments