Given a number n, the task is to find the nth Enneadecagonal number.
An Enneadecagonal number is a nineteen-sided polygon in mathematics. It belongs to a class of figurative numbers. The number contains the number of dots and the dots are arranged in a pattern or series. An Enneadecagonal number is also known as nonadecagon. The dots have common points and all other dots are arranged in the successive layer.
Examples :
Input : 4
Output :106
Input :10
Output :775
Formula to find nth Enneadecagonal number :
C++
// C++ program to find // nth Enneadecagonal number #include <bits/stdc++.h> using namespace std; // Function to calculate // Enneadecagonal number int nthEnneadecagonal( long int n) { // Formula for finding // nth Enneadecagonal number return (17 * n * n - 15 * n) / 2; } // Drivers code int main() { long int n = 6; cout << n << "th Enneadecagonal number :" << nthEnneadecagonal(n); return 0; } |
C
// C program to find // nth Enneadecagonal number #include <stdio.h> // Function to calculate // Enneadecagonal number int nthEnneadecagonal( long int n) { // Formula for finding // nth Enneadecagonal number return (17 * n * n - 15 * n) / 2; } // Drivers code int main() { long int n = 6; printf ( "%ldth Enneadecagonal number : %d" ,n,nthEnneadecagonal(n)); return 0; } // This code is contributed by kothavvsaakash. |
Java
// Java program to find // nth Enneadecagonal number import java.io.*; class GFG { // Function to calculate // Enneadecagonal number static int nthEnneadecagonal( int n) { // Formula for finding // nth Enneadecagonal number return ( 17 * n * n - 15 * n) / 2 ; } // Driver Code public static void main (String[] args) { int n = 6 ; System.out.print(n + "th Enneadecagonal number :" ); System.out.println( nthEnneadecagonal(n)); } } // This code is contributed by m_kit. |
Python3
# Program to find nth # Enneadecagonal number def nthEnneadecagonal(n) : # Formula to calculate nth # Enneadecagonal number return ( 17 * n * n - 15 * n) / / 2 # Driver Code if __name__ = = '__main__' : n = 6 print (n, "th Enneadecagonal number :" , nthEnneadecagonal(n)) # This code is contributed by Ajit |
C#
// C# program to find // nth Enneadecagonal number using System; class GFG { // Function to calculate // Enneadecagonal number static int nthEnneadecagonal( int n) { // Formula for finding // nth Enneadecagonal number return (17 * n * n - 15 * n) / 2; } // Driver Code static public void Main () { int n = 6; Console.Write(n + "th Enneadecagonal number :" ); Console.WriteLine( nthEnneadecagonal(n)); } } // This code is contributed by aj_36 |
PHP
<?php // PHP program to find // nth Enneadecagonal number // Function to calculate // Enneadecagonal number function nthEnneadecagonal( $n ) { // Formula for finding // nth Enneadecagonal number return (17 * $n * $n - 15 * $n ) / 2; } // Driver Code $n = 6; echo $n , "th Enneadecagonal number :" , nthEnneadecagonal( $n ); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program to find nth Enneadecagonal number // Function to calculate // Enneadecagonal number function nthEnneadecagonal(n) { // Formula for finding // nth Enneadecagonal number return (17 * n * n - 15 * n) / 2; } let n = 6; document.write(n + "th Enneadecagonal number :" ); document.write( nthEnneadecagonal(n)); </script> |
Output:
6th Enneadecagonal number :261
Time Complexity: O(1)
Auxiliary Space: O(1)