Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount numbers having GCD with N equal to the number itself

Count numbers having GCD with N equal to the number itself

Given a positive integer N, the task is to find the number of positive integers whose GCD with the given integer N is the number itself.

Examples:

Input: N = 5
Output: 2
Explanation:
Following are the numbers whose GCD with N is the number itself:

  1. Number 1: GCD(1, 5) = 1.
  2. Number 1: GCD(5, 5) = 5.

Therefore, the total count is 2.

Input: N = 10
Output: 4

 

Approach: The given problem can be solved based on the observation that the necessary condition for GCD of any number(say K) with N is K if and only if K is a factor of N. Therefore, the idea is to find the number of factors of N. Follow the below steps to solve the problem:

  • Initialize a variable, say count as 0, to count the number of factors of N.
  • Iterate over the range [1, sqrt(N)] and perform the following steps:
    • If the current number i divides the given integer N, then increment count by 1.
    • If the value of i and N / i is not the same, then increment count by 1.
  • After completing the above steps, print the value of count as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count numbers whose
// GCD with N is the number itself
int countNumbers(int N)
{
    // Stores the count of factors of N
    int count = 0;
 
    // Iterate over the range [1, sqrt(N)]
    for (int i = 1; i * i <= N; i++) {
 
        // If i is divisible by i
        if (N % i == 0) {
 
            // Increment count
            count++;
 
            // Avoid counting the
            // same factor twice
            if (N / i != i) {
                count++;
            }
        }
    }
 
    // Return the resultant count
    return count;
}
 
// Driver Code
int main()
{
    int N = 10;
    cout << countNumbers(N);
 
    return 0;
}


Java




// java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
public class GFG {
 
    // Function to count numbers whose
    // GCD with N is the number itself
    static int countNumbers(int N)
    {
        // Stores the count of factors of N
        int count = 0;
 
        // Iterate over the range [1, sqrt(N)]
        for (int i = 1; i * i <= N; i++) {
 
            // If i is divisible by i
            if (N % i == 0) {
 
                // Increment count
                count++;
 
                // Avoid counting the
                // same factor twice
                if (N / i != i) {
                    count++;
                }
            }
        }
 
        // Return the resultant count
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 10;
        System.out.println(countNumbers(N));
    }
}
 
// This code is contributed by Kingash.


Python3




# Python3 program for the above approach
 
# Function to count numbers whose
# GCD with N is the number itself
def countNumbers(N):
     
    # Stores the count of factors of N
    count = 0
     
    # Iterate over the range [1, sqrt(N)]
    for i in range(1, N + 1):
        if i * i > N:
            break
 
        # If i is divisible by i
        if (N % i == 0):
 
            # Increment count
            count += 1
             
            # Avoid counting the
            # same factor twice
            if (N // i != i):
                count += 1
 
    # Return the resultant count
    return count
 
# Driver Code
if __name__ == '__main__':
     
    N = 10
    print(countNumbers(N))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
public class GFG {
 
    // Function to count numbers whose
    // GCD with N is the number itself
    static int countNumbers(int N)
    {
        // Stores the count of factors of N
        int count = 0;
 
        // Iterate over the range [1, sqrt(N)]
        for (int i = 1; i * i <= N; i++) {
 
            // If i is divisible by i
            if (N % i == 0) {
 
                // Increment count
                count++;
 
                // Avoid counting the
                // same factor twice
                if (N / i != i) {
                    count++;
                }
            }
        }
 
        // Return the resultant count
        return count;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int N = 10;
        Console.WriteLine(countNumbers(N));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
 
// Javascript program for the above approach
 
 
// Function to count numbers whose
// GCD with N is the number itself
function countNumbers(N)
{
    // Stores the count of factors of N
    var count = 0;
 
    // Iterate over the range [1, sqrt(N)]
    for (i = 1; i * i <= N; i++) {
 
        // If i is divisible by i
        if (N % i == 0) {
 
            // Increment count
            count++;
 
            // Avoid counting the
            // same factor twice
            if (parseInt(N / i) != i) {
                count++;
            }
        }
    }
 
    // Return the resultant count
    return count;
}
 
// Driver Code
var N = 10;
document.write(countNumbers(N));
 
// This code is contributed by Amit Katiyar
 
</script>


Output: 

4

 

Time Complexity: O(N1/2)
Auxiliary Space: O(1), since N extra space has been taken.

Last Updated :
20 Jul, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments