Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICount of pairs in given Array having same ratio

Count of pairs in given Array having same ratio

Given an array arr[] consisting of N pairs of the form {A, B}, the task is to count the pairs of indices (i, j) such that the ratio of pairs of arr[i] and arr[j] are the same.

Examples:

Input: arr[] = {{2, 6}, {1, 3}, {8, 24}}
Output: 3
Explanation:
Following are the pairs of indices whose ratios are the same:

  1. (0, 1): Ratio of pair arr[0] = 2/6 = 1/3 and the ratio of pair arr[1] = 1/3, which are the same.
  2. (0, 2): Ratio of pair arr[0] = 2/6 = 1/3 and the ratio of pair arr[2] = 8/24 = 1/3, which are the same.
  3. (1, 2): Ratio of pair arr[1] = 1/3 and the ratio of pair arr[2] = 8/24 = 1/3, which are the same.

Therefore, the count of such pairs are 3.

Input: arr[] = {{4, 5}, {7, 8}}
Output: 0

Naive Approach: The simplest approach to solve the given problem is to generate all possible pairs of the given array and count those pairs whose ratios are the same. After checking for all the pairs, print the total count of pairs obtained.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the count of pairs
// having same ratio
long long pairsWithSameRatio(
    vector<pair<int, int> >& arr)
{
    // Stores the total count of pairs
    int count = 0;
 
    // Traverse the array arr[]
    for (int i = 0; i < arr.size(); i++) {
 
        // Find the first ratio
        double ratio1
            = (double)arr[i].first
              / (double)arr[i].second;
 
        for (int j = i + 1; j < arr.size(); j++) {
 
            // Find the second ratio
            double ratio2 = (double)arr[j].first
                            / (double)arr[j].second;
 
            // Increment the count if
            // the ratio are the same
            if (ratio1 == ratio2) {
                count++;
            }
        }
    }
 
    // Return the total count obtained
    return count;
}
 
// Driver Code
int main()
{
    vector<pair<int, int> > arr = {
        { 2, 6 }, { 1, 3 }, { 8, 24 }, { 4, 12 }, { 16, 48 }
    };
    cout << pairsWithSameRatio(arr);
 
    return 0;
}


Java




// Java program for the above approach
class GFG {
    static class pair {
        int first, second;
 
        public pair(int first, int second) {
            this.first = first;
            this.second = second;
        }
    }
 
    // Function to find the count of pairs
    // having same ratio
    static long pairsWithSameRatio(pair[] arr)
    {
       
        // Stores the total count of pairs
        int count = 0;
 
        // Traverse the array arr[]
        for (int i = 0; i < arr.length; i++) {
 
            // Find the first ratio
            double ratio1 = (double) arr[i].first / (double) arr[i].second;
 
            for (int j = i + 1; j < arr.length; j++) {
 
                // Find the second ratio
                double ratio2 = (double) arr[j].first / (double) arr[j].second;
 
                // Increment the count if
                // the ratio are the same
                if (ratio1 == ratio2) {
                    count++;
                }
            }
        }
 
        // Return the total count obtained
        return count;
    }
 
    // Driver Code
    public static void main(String[] args) {
        pair[] arr = { new pair(2, 6), new pair(1, 3), new pair(8, 24), new pair(4, 12), new pair(16, 48) };
        System.out.print(pairsWithSameRatio(arr));
 
    }
}
 
// This code is contributed by shikhasingrajput


Python3




# Python 3 program for the above approach
 
# Function to find the count of pairs
# having same ratio
def pairsWithSameRatio(arr):
   
    # Stores the total count of pairs
    count = 0
 
    # Traverse the array arr[]
    for i in range(len(arr)):
       
        # Find the first ratio
        ratio1 = arr[i][0]//arr[i][1]
 
        for j in range(i + 1, len(arr), 1):
           
            # Find the second ratio
            ratio2 = arr[j][0]//arr[j][1]
 
            # Increment the count if
            # the ratio are the same
            if (ratio1 == ratio2):
                count += 1
 
    # Return the total count obtained
    return count
 
# Driver Code
if __name__ == '__main__':
    arr = [[2, 6],[1, 3],[8, 24],[4, 12],[16, 48]]
    print(pairsWithSameRatio(arr))
     
    # This code is contributed by SURENDRA_GANGWAR.


C#




// C# program for the above approach
using System;
 
public class GFG {
    class pair {
        public int first, second;
 
        public pair(int first, int second) {
            this.first = first;
            this.second = second;
        }
    }
 
    // Function to find the count of pairs
    // having same ratio
    static long pairsWithSameRatio(pair[] arr)
    {
       
        // Stores the total count of pairs
        int count = 0;
 
        // Traverse the array []arr
        for (int i = 0; i < arr.Length; i++) {
 
            // Find the first ratio
            double ratio1 = (double) arr[i].first / (double) arr[i].second;
 
            for (int j = i + 1; j < arr.Length; j++) {
 
                // Find the second ratio
                double ratio2 = (double) arr[j].first / (double) arr[j].second;
 
                // Increment the count if
                // the ratio are the same
                if (ratio1 == ratio2) {
                    count++;
                }
            }
        }
 
        // Return the total count obtained
        return count;
    }
 
    // Driver Code
    public static void Main(String[] args) {
        pair[] arr = { new pair(2, 6), new pair(1, 3), new pair(8, 24), new pair(4, 12), new pair(16, 48) };
        Console.Write(pairsWithSameRatio(arr));
 
    }
}
 
  
 
// This code is contributed by 29AjayKumar


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to find the count of pairs
        // having same ratio
        function pairsWithSameRatio(
            arr) {
            // Stores the total count of pairs
            let count = 0;
 
            // Traverse the array arr[]
            for (let i = 0; i < arr.length; i++) {
 
                // Find the first ratio
                let ratio1
                    = arr[i].first
                    / arr[i].second;
 
                for (let j = i + 1; j < arr.length; j++) {
 
                    // Find the second ratio
                    ratio2 = arr[j].first
                        / arr[j].second;
 
                    // Increment the count if
                    // the ratio are the same
                    if (ratio1 == ratio2) {
                        count++;
                    }
                }
            }
 
            // Return the total count obtained
            return count;
        }
 
        // Driver Code
        let arr = [
            { first: 2, second: 6 }, { first: 1, second: 3 }, { first: 8, second: 24 }, { first: 4, second: 12 }, { first: 16, second: 48 }
        ]
        document.write(pairsWithSameRatio(arr));
 
     // This code is contributed by Potta Lokesh
 
    </script>


 
 

Output: 

10

 

 

Time Complexity: O(N2)
Auxiliary Space: O(1)

 

Efficient Approach: The above approach can be optimized by using the map by storing the frequency of the ratios of every pair in the given array arr[] and then count the total number of pairs formed. Follow the step below to solve the given problem:

 

  • Initialize a variable, say ans as 0 that stores the total count of pairs having the same ratio.
  • Create an unordered map, say Map that stores the key as the ratio of pair of array elements and value as their frequency.
  • Traverse the given array arr[] and for each pair {A, B} increment the frequency of A/B in the map by 1.
  • Iterate over the map Map and for each key-value pair if the frequency of any key is greater than 1 then add the value of frequency*(frequency – 1)/2 to the variable ans storing the resultant count of pairs with the current key as the ratio.
  • After completing the above steps, print the value of ans as the result.

 

Below is the implementation of the above approach:

 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Returns factorial of N
int fact(int n)
{
    int res = 1;
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Return the value of nCr
int nCr(int n, int r)
{
    return fact(n) / (fact(r) * fact(n - r));
}
 
// Function to count the number of pairs
// having the same ratio
int pairsWithSameRatio(
    vector<pair<int, int> >& arr)
{
    // Stores the frequency of the ratios
    unordered_map<double, int> mp;
    int ans = 0;
 
    // Filling the map
    for (auto x : arr) {
        mp[x.first / x.second] += 1;
    }
 
    for (auto x : mp) {
        int val = x.second;
 
        // Find the count of pairs with
        // current key as the ratio
        if (val > 1) {
            ans += nCr(val, 2);
        }
    }
 
    // Return the total count
    return ans;
}
 
// Driver Code
int main()
{
    vector<pair<int, int> > arr = {
        { 2, 6 }, { 1, 3 }, { 8, 24 }, { 4, 12 }, { 16, 48 }
    };
    cout << pairsWithSameRatio(arr);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
static class pair
{
    int first, second;
    public pair(int first, int second) 
    {
        this.first = first;
        this.second = second;
    }   
}
   
// Returns factorial of N
static int fact(int n)
{
    int res = 1;
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Return the value of nCr
static int nCr(int n, int r)
{
    return fact(n) / (fact(r) * fact(n - r));
}
 
// Function to count the number of pairs
// having the same ratio
static int pairsWithSameRatio(
    pair []arr)
{
   
    // Stores the frequency of the ratios
    Map<Double, Integer> mp = new HashMap<Double, Integer>();
    int ans = 0;
 
    // Filling the map
    for (pair x : arr) {
        if(mp.containsKey((double) (x.first / x.second))){
            mp.put((double) (x.first / x.second), mp.get((double) (x.first / x.second))+1);
        }
        else{
            mp.put((double)(x.first / x.second), 1);
        }
    }
 
    for (Map.Entry<Double,Integer> x : mp.entrySet()){
        int val = x.getValue();
 
        // Find the count of pairs with
        // current key as the ratio
        if (val > 1) {
            ans += nCr(val, 2);
        }
    }
 
    // Return the total count
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    pair []arr = {
            new pair( 2, 6 ), new pair( 1, 3 ), new pair( 8, 24 ), new pair( 4, 12 ), new pair( 16, 48 )
    };
    System.out.print(pairsWithSameRatio(arr));
 
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python 3 program for the above approach
from collections import defaultdict
 
# Returns factorial of N
def fact(n):
 
    res = 1
    for i in range(2, n + 1):
        res = res * i
    return res
 
# Return the value of nCr
def nCr(n, r):
 
    return fact(n) // (fact(r) * fact(n - r))
 
# Function to count the number of pairs
# having the same ratio
def pairsWithSameRatio(arr):
 
    # Stores the frequency of the ratios
    mp = defaultdict(int)
    ans = 0
 
    # Filling the map
    for x in arr:
        mp[x[0] // x[1]] += 1
 
    for x in mp:
        val = mp[x]
 
        # Find the count of pairs with
        # current key as the ratio
        if (val > 1):
            ans += nCr(val, 2)
 
    # Return the total count
    return ans
 
# Driver Code
if __name__ == "__main__":
 
    arr = [[2, 6], [1, 3], [8, 24], [4, 12], [16, 48]]
    print(pairsWithSameRatio(arr))
 
    # This code is contributed by ukasp.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG{
class pair
{
    public int first, second;
    public pair(int first, int second) 
    {
        this.first = first;
        this.second = second;
    }   
}
   
// Returns factorial of N
static int fact(int n)
{
    int res = 1;
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Return the value of nCr
static int nCr(int n, int r)
{
    return fact(n) / (fact(r) * fact(n - r));
}
 
// Function to count the number of pairs
// having the same ratio
static int pairsWithSameRatio(
    pair []arr)
{
   
    // Stores the frequency of the ratios
    Dictionary<Double, int> mp = new Dictionary<Double, int>();
    int ans = 0;
 
    // Filling the map
    foreach (pair x in arr) {
        if(mp.ContainsKey((double) (x.first / x.second))){
            mp[(double) (x.first / x.second)]=mp[(double) (x.first / x.second)]+1;
        }
        else{
            mp.Add((double)(x.first / x.second), 1);
        }
    }
 
    foreach (KeyValuePair<Double,int> x in mp){
        int val = x.Value;
 
        // Find the count of pairs with
        // current key as the ratio
        if (val > 1) {
            ans += nCr(val, 2);
        }
    }
 
    // Return the total count
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    pair []arr = {
            new pair( 2, 6 ), new pair( 1, 3 ), new pair( 8, 24 ), new pair( 4, 12 ), new pair( 16, 48 )
    };
    Console.Write(pairsWithSameRatio(arr));
 
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// javascript program for the above approach
     class pair {
 
        constructor(first , second) {
            this.first = first;
            this.second = second;
        }
    }
 
    // Returns factorial of N
    function fact(n) {
        var res = 1;
        for (i = 2; i <= n; i++)
            res = res * i;
        return res;
    }
 
    // Return the value of nCr
    function nCr(n , r) {
        return fact(n) / (fact(r) * fact(n - r));
    }
 
    // Function to count the number of pairs
    // having the same ratio
    function pairsWithSameRatio( arr) {
 
        // Stores the frequency of the ratios
        var mp = new Map();
        var ans = 0;
 
        // Filling the map
        for (var x of arr) {
            if (mp.has( (x.first / x.second))) {
                mp.set((x.first / x.second), mp.get( (x.first / x.second)) + 1);
            } else {
                mp.set( (x.first / x.second), 1);
            }
        }
 
        for ( x of mp) {
            var val = x[1];
 
            // Find the count of pairs with
            // current key as the ratio
            if (val > 1) {
                ans += nCr(val, 2);
            }
        }
 
        // Return the total count
        return ans;
    }
 
    // Driver Code
        var arr = [ new pair(2, 6), new pair(1, 3),
        new pair(8, 24), new pair(4, 12), new pair(16, 48) ];
        document.write(pairsWithSameRatio(arr));
 
// This code is contributed by Rajput-Ji
</script>


 
 

Output: 

10

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Last Updated :
15 Feb, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Take a part in the ongoing discussion

RELATED ARTICLES

Most Popular

Recent Comments