Saturday, January 11, 2025
Google search engine

Woodall Primes

Woodall Primes are prime numbers that are also Woodall number.
 

Find the Woodall prime numbers less than N

Given a number N, print all Woodall primes smaller than or equal to N. 
Examples: 
 

Input: N = 10 
Output: 7
Input: N = 500 
Output: 7, 23, 383 
 

 

Approach: The idea is to use Sieve of Eratosthenes to check that a number is prime or not efficiently. Then, Iterate over integers from 1 to N, and for every number check that if it is prime or not and it is Woodall number or not. If a number is prime also a Woodall number, Then it a Woodall prime.
 

Below is the implementation of above algorithm:

 

C++




// C++ implementation to print all Woodall
// primes smaller than or equal to n.
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// N is Woodall
bool isWoodall(int x)
{
  // If number is even, return false.
  if (x % 2 == 0)
    return false;
 
  // If x is 1, return true.
  if (x == 1)
    return true;
 
  x = x + 1; // Add 1 to make x even
 
  // While x is divisible by 2
  int p = 0;
  while (x % 2 == 0) {
    // Divide x by 2
    x = x / 2;
 
    // Count the power
    p = p + 1;
 
    // If at any point power and
    // x became equal, return true.
    if (p == x)
      return true;
  }
 
  return false;
}
 
// Function to generate all primes and checking
// whether number is Woodall or not
void printWoodallPrimesLessThanN(int n)
{
  // Create a boolean array "prime[0..n]" and
  // initialize all entries it as true. A value
  // in prime[i] will finally be false if i is
  // Not a prime, else true.
  vector<bool> prime(n + 1, true);
 
  int p = 2;
  while (p * p <= n) {
    // If prime[p] is not changed,
    // then it is a prime
    if (prime[p])
 
      // Update all multiples of p
      for (int i = p * 2; i <= n; i += p)
        prime[i] = false;
    p += 1;
  }
 
  // Print all Woodall prime numbers
  for (p = 2; p <= n; p++) {
 
    // checking whether the given number
    // is prime Woodall or not
    if (prime[p] && isWoodall(p))
      cout << p << " ";
  }
}
 
// Driver Code
int main()
{
  int n = 1000;
  printWoodallPrimesLessThanN(n);
}
 
// This code is contributed by phasing17


Java




// Java implementation to print all Woodall
// primes smaller than or equal to n.
import java.io.*;
import java.util.*;
 
class GFG
{
   
  // Function to check if a number
  // N is Woodall
  static Boolean isWoodall(int x)
  {
 
    // If number is even, return false.
    if (x % 2 == 0)
      return false;
 
    // If x is 1, return true.
    if (x == 1)
      return true;
 
    x = x + 1; // Add 1 to make x even
 
    // While x is divisible by 2
    int p = 0;
    while (x % 2 == 0)
    {
 
      // Divide x by 2
      x = x / 2;
 
      // Count the power
      p = p + 1;
 
      // If at any point power and
      // x became equal, return true.
      if (p == x)
        return true;
    }
 
    return false;
  }
 
  // Function to generate all primes and checking
  // whether number is Woodall or not
  static void printWoodallPrimesLessThanN(int n)
  {
 
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true. A value
    // in prime[i] will finally be false if i is
    // Not a prime, else true.
    ArrayList<Boolean> prime = new ArrayList<Boolean>();
 
    for (int i = 0; i <= n; i++)
      prime.add(true);
 
    int p = 2;
    while (p * p <= n)
    {
 
      // If prime[p] is not changed,
      // then it is a prime
      if (prime.get(p))
 
        // Update all multiples of p
        for (int i = p * 2; i <= n; i += p)
          prime.set(i,false);
      p += 1;
    }
 
    // Print all Woodall prime numbers
    for (p = 2; p <= n; p++) {
 
      // checking whether the given number
      // is prime Woodall or not
      if (prime.get(p) && isWoodall(p))
        System.out.print(p + " ");
    }
  }
 
  // Driver Code
  public static void main (String []args)
  {
    int n = 1000;
    printWoodallPrimesLessThanN(n);
  }
}
 
// This code is contributed by Pushpesh Raj


Python3




# Python3 implementation to print all Woodall 
# primes smaller than or equal to n. 
    
# Function to check if a number
# N is Woodall  
def isWoodall(x) :
       
    # If number is even, return false.
    if (x % 2 == 0) :
        return False
    
    # If x is 1, return true.
    if (x == 1) :
        return True
        
    x = x + 1  # Add 1 to make x even
    
    # While x is divisible by 2
    p = 0
    while (x % 2 == 0) :
           
        # Divide x by 2
        x = x / 2
    
        # Count the power
        p = p + 1
    
        # If at any point power and 
        # x became equal, return true.
        if (p == x) :
            return True
           
    return False
       
# Function to generate all primes and checking 
# whether number is Woodall or not 
def printWoodallPrimesLessThanN(n):
       
    # Create a boolean array "prime[0..n]" and 
    # initialize all entries it as true. A value 
    # in prime[i] will finally be false if i is 
    # Not a prime, else true. 
    prime = [True] * (n + 1); 
    p = 2;
    while (p * p <= n):
           
        # If prime[p] is not changed, 
        # then it is a prime 
        if (prime[p]): 
               
            # Update all multiples of p 
            for i in range(p * 2, n + 1, p): 
                prime[i] = False;
        p += 1;
           
    # Print all Woodall prime numbers 
    for p in range(2, n + 1): 
           
        # checking whether the given number 
        # is prime Woodall or not 
        if (prime[p] and isWoodall(p)): 
            print(p, end = " "); 
       
# Driver Code 
n = 1000;
printWoodallPrimesLessThanN(n)


C#




// C# implementation to print all Woodall
// primes smaller than or equal to n.
using System;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to check if a number
  // N is Woodall
  static bool isWoodall(int x)
  {
 
    // If number is even, return false.
    if (x % 2 == 0)
      return false;
 
    // If x is 1, return true.
    if (x == 1)
      return true;
 
    x = x + 1; // Add 1 to make x even
 
    // While x is divisible by 2
    int p = 0;
    while (x % 2 == 0)
    {
 
      // Divide x by 2
      x = x / 2;
 
      // Count the power
      p = p + 1;
 
      // If at any point power and
      // x became equal, return true.
      if (p == x)
        return true;
    }
 
    return false;
  }
 
  // Function to generate all primes and checking
  // whether number is Woodall or not
  static void printWoodallPrimesLessThanN(int n)
  {
 
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true. A value
    // in prime[i] will finally be false if i is
    // Not a prime, else true.
    List<bool> prime = new List<bool>();
    for (int i = 0; i <= n; i++)
      prime.Add(true);
 
 
    int p = 2;
    while (p * p <= n)
    {
 
      // If prime[p] is not changed,
      // then it is a prime
      if (prime[p])
 
        // Update all multiples of p
        for (int i = p * 2; i <= n; i += p)
          prime[i] = false;
      p += 1;
    }
 
    // Print all Woodall prime numbers
    for (p = 2; p <= n; p++) {
 
      // checking whether the given number
      // is prime Woodall or not
      if (prime[p] && isWoodall(p))
        Console.Write(p + " ");
    }
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    int n = 1000;
    printWoodallPrimesLessThanN(n);
  }
}
 
// This code is contributed by phasing17


Javascript




// Python3 implementation to print all Woodall 
// primes smaller than or equal to n. 
    
// Function to check if a number
// N is Woodall  
function isWoodall(x) 
{
    // If number is even, return false.
    if (x % 2 == 0) 
        return false
    
    // If x is 1, return true.
    if (x == 1) 
        return true
        
    x = x + 1  // Add 1 to make x even
    
    // While x is divisible by 2
    let p = 0
    while (x % 2 == 0) 
    {     
        // Divide x by 2
        x = x / 2
    
        // Count the power
        p = p + 1
    
        // If at any point power and 
        // x became equal, return true.
        if (p == x) 
            return true
    }
           
    return false
}
 
// Function to generate all primes and checking 
// whether number is Woodall or not 
function printWoodallPrimesLessThanN(n)
{
    // Create a boolean array "prime[0..n]" and 
    // initialize all entries it as true. A value 
    // in prime[i] will finally be false if i is 
    // Not a prime, else true.
    let prime = new Array(n + 1).fill(true)
     
    let p = 2;
    while (p * p <= n)
    {
        // If prime[p] is not changed, 
        // then it is a prime 
        if (prime[p]) 
               
            // Update all multiples of p 
            for (var i = p * 2; i <= n; i += p)
                prime[i] = false;
        p += 1;
    }
           
    // Print all Woodall prime numbers
    for (p = 2; p <= n; p ++)
    {
           
        // checking whether the given number 
        // is prime Woodall or not 
        if (prime[p] && isWoodall(p)) 
            process.stdout.write(p + " ");
    }
}
       
// Driver Code 
let n = 1000;
printWoodallPrimesLessThanN(n)
 
 
 
// This code is contributed by phasing17


Output: 

7 23 383

 

Time Complexity: O(n*log(n))
Auxiliary Space: O(n)

Last Updated :
22 Mar, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments