Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimize group such that no two range of same group intersect

Minimize group such that no two range of same group intersect

Given an array ranges[] of size N (1 ? N ? 105), where ranges[i] = {starti, endi} represents the range between starti to endi (both inclusive). The task is to find the minimum number of groups that are needed such that each interval of ranges[] belongs to exactly one group and no two ranges[i] in the same group will intersect with each other.

Note: Two intervals intersect if at least one common number exists between them. For example, the intervals [2, 6] and [6, 7] intersect.

Examples:

Input: ranges[] = {{5, 10}, {6, 8}, {1, 5}, {2, 3}, {1, 10}}
Output: 3
Explanation: We can divide the range[] into the following groups:
Group 1: {1, 5}, {6, 8}.
Group 2: {2, 3}, {5, 10}.
Group 3: {1, 10}.

Input: ranges[] = {{1, 3], {5, 6}, {8, 10}, {11, 13}}
Output: 1

An approach using line sweep:

The idea is to keep track of maximum number of overlapping intervals at any time say N. So there should be N numbers of individual groups to avoid any intersection internally in group.

Follow the steps below to implement the above idea:

  • Initialize a map to keep the ranges in the sorted order based on the start range
  • Initialize a variable result to represent the maximum number of intervals that overlap.
  • Iterate over each range of ranges[]
    • Increment the occurrences of range in the map
  • Initialize a variable sum to represent the number of ranges that overlap at a particular time
  • Iterate over the map and calculate the prefix sum of occurrence of range
    • Maximize the result with the maximum number of intervals that overlap at a specific time
  • Return the result

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number
// of required groups
int minGroups(vector<vector<int> >& intervals)
{
    // Initialise a map to keep the
    // intervals in the sorted ordered
    // based on start ranges
    map<int, int> mp;
 
    // Iterate over the each range of
    // ranges[] Increment the occurrence
    // of interval in map
    for (auto& i : intervals) {
        mp[i[0]]++;
        mp[i[1] + 1]--;
    }
 
    // Initialise a variable result to
    // represents the maximum number of
    // intervals that overlap. Initialise
    // a variable sum to represents the
    // number of intervals that overlap
    // at a particular time
    int result = 0, sum = 0;
 
    // Iterate over the map and calculate
    // the prefix sum of occurrence of
    // interval
    for (auto& it : mp) {
 
        // Maximise the result with maximum
        // number of intervals that overlap
        // at a particular time
        result = max(result, sum += it.second);
    }
 
    // Return the result
    return result;
}
 
// Driver code.
int main()
{
    vector<vector<int> > ranges = {
        { 5, 10 }, { 6, 8 }, { 1, 5 }, { 2, 3 }, { 1, 10 }
    };
 
    // Function Call
    cout << minGroups(ranges);
 
    return 0;
}


Java




// Java code to implement the approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
  // Function to find the minimum number
  // of required groups
  static int minGroups(int[][] intervals)
  {
    // Initialise a map to keep the
    // intervals in the sorted ordered
    // based on start ranges
    HashMap<Integer, Integer> mp = new HashMap<>();
 
    // Iterate over the each range of
    // ranges[] Increment the occurrence
    // of interval in map
    for (int i = 0; i < 5; i++) {
      int a = intervals[i][0];
      int b = intervals[i][1] + 1;
      if (mp.containsKey(a)) {
        var val = mp.get(a);
        mp.remove(a);
        mp.put(a, val + 1);
      }
      else
        mp.put(a, 1);
      if (mp.containsKey(b)) {
        var val = mp.get(b);
        mp.remove(b);
        mp.put(b, val - 1);
      }
      else
        mp.put(b, -1);
    }
 
    // Initialise a variable result to
    // represents the maximum number of
    // intervals that overlap. Initialise
    // a variable sum to represents the
    // number of intervals that overlap
    // at a particular time
    int result = 0, sum = 0;
 
    // Iterate over the map and calculate
    // the prefix sum of occurrence of
    // interval
    for (Integer it : mp.values()) {
      // Maximise the result with maximum
      // number of intervals that overlap
      // at a particular time
      result = Math.max(result, sum);
      sum += it;
    }
 
    // Return the result
    return result;
  }
 
  public static void main(String[] args)
  {
    int[][] ranges = { { 5, 10 },
                      { 6, 8 },
                      { 1, 5 },
                      { 2, 3 },
                      { 1, 10 } };
 
    // Function call
    System.out.print(minGroups(ranges));
  }
}
 
// This code is contributed by lokesh.


Python3




# Python code to implement the approach
 
# Function to find the minimum number
# of required groups
def minGroups(intervals):
    # Initialise a map to keep the
    # intervals in the sorted ordered
    # based on start ranges
    mp=[0]*10001
     
    # Iterate over the each range of
    # ranges[] Increment the occurrence
    # of interval in map
    for i in range(len(intervals)):
        mp[intervals[i][0]]=mp[intervals[i][0]]+1
        mp[intervals[i][1]+1]=mp[intervals[i][1]+1]-1
         
    # Initialise a variable result to
    # represents the maximum number of
    # intervals that overlap. Initialise
    # a variable sum to represents the
    # number of intervals that overlap
    # at a particular time
    result, sum = 0, 0
     
    # Iterate over the map and calculate
    # the prefix sum of occurrence of
    # interval
    for it in range(len(mp)):
        # Maximise the result with maximum
        # number of intervals that overlap
        # at a particular time
        sum = sum + mp[it]
        result = max(result, sum)
     
    # Return the result
    return result
 
# Driver code
ranges = [[5, 10],[6, 8],[1, 5],[2, 3],[1, 10]]
 
# Function Call
print(minGroups(ranges))
 
# This code is contributed by Pushpesh Raj.


C#




using System;
using System.Collections.Generic;
class GFG {
 
    // Function to find the minimum number
    // of required groups
    static int minGroups(int[, ] intervals, int n)
    {
        // Initialise a map to keep the
        // intervals in the sorted ordered
        // based on start ranges
        SortedDictionary<int, int> mp
            = new SortedDictionary<int, int>();
        // Iterate over the each range of
        // ranges[] Increment the occurrence
        // of interval in map
        for (int i = 0; i < n; i++) {
            int a = intervals[i, 0];
            int b = intervals[i, 1] + 1;
            if (mp.ContainsKey(a)) {
                var val = mp[a];
                mp.Remove(a);
                mp.Add(a, val + 1);
            }
            else
                mp.Add(a, 1);
            if (mp.ContainsKey(b)) {
                var val = mp[b];
                mp.Remove(b);
                mp.Add(b, val - 1);
            }
            else
                mp.Add(b, -1);
        }
 
        // Initialise a variable result to
        // represents the maximum number of
        // intervals that overlap. Initialise
        // a variable sum to represents the
        // number of intervals that overlap
        // at a particular time
        int result = 0, sum = 0;
 
        // Iterate over the map and calculate
        // the prefix sum of occurrence of
        // interval
        foreach(KeyValuePair<int, int> it in mp)
        {
            // Maximise the result with maximum
            // number of intervals that overlap
            // at a particular time
            result = Math.Max(result, sum);
            sum += it.Value;
        }
 
        // Return the result
        return result;
    }
 
    static void Main()
    {
        int[, ] ranges = { { 5, 10 },
                           { 6, 8 },
                           { 1, 5 },
                           { 2, 3 },
                           { 1, 10 } };
 
        // Function Call
        Console.Write(minGroups(ranges, 5));
    }
}
 
// This code is contributed by garg28harsh.


Javascript




   // JavaScript code for the above approach
 
   // Function to find the minimum number
   // of required groups
   function minGroups(intervals)
   {
    
     // Initialise a map to keep the
     // intervals in the sorted ordered
     // based on start ranges
     let mp = new Array(10001).fill(0);
 
     // Iterate over the each range of
     // ranges[] Increment the occurrence
     // of interval in map
     for (let i = 0; i < intervals.length; i++) {
       mp[intervals[i][0]]++;
       mp[intervals[i][1] + 1]--;
     }
 
     // Initialise a variable result to
     // represents the maximum number of
     // intervals that overlap. Initialise
     // a variable sum to represents the
     // number of intervals that overlap
     // at a particular time
     let result = 0, sum = 0;
 
     // Iterate over the map and calculate
     // the prefix sum of occurrence of
     // interval
     for (let it = 0; it < mp.length; it++) {
 
       // Maximise the result with maximum
       // number of intervals that overlap
       // at a particular time
       result = Math.max(result, sum += mp[it]);
     }
 
     // Return the result
     return result;
   }
 
   // Driver code.
   let ranges = [
     [5, 10], [6, 8], [1, 5], [2, 3], [1, 10]
   ];
 
   // Function Call
   console.log(minGroups(ranges));
 
// This code is contributed by Potta Lokesh


Output

3

Time Complexity: O(N)
Auxiliary Space: O(N)

Last Updated :
16 Dec, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments