Given an array arr[] and an integer K, the task is to find the array element from indices not divisible by K whose product of digits is a composite number.
Examples:
Input: arr[] = {233, 144, 89, 71, 13, 21, 11, 34, 55, 23}, K = 3
Output: 89
Explanation:
Following elements have product of digits as a composite number:
arr[0] = 233 : Product of digits = 2 * 3 * 3 = 18
arr[1] = 144 : Product of digits = 1 * 4 * 4 = 16
arr[2] = 89 : Product of digits = 8 * 9 = 72
arr[7] = 34 : Product of digits = 3 * 4 = 12
arr[8] = 55 : Product of digits = 5 * 5 = 25
Therefore, the largest composite product of digits of array elements at indices not divisible by K ( = 3) is 72.Input: arr[] = {122, 566, 131, 211, 721, 19, 65, 1111, 111777}, K = 4
Output: 566
Approach: Follow the steps given below to solve the problem
- Traverse the given array arr[].
- For each array element, check if the product of its digits is a composite or product of its digits is less than or equal to 1.
- If product of its digits is composite and its position is divisible by k then
- Insert the element in ans variable and its Composite DigitProduct in the vector pq.
- Finally, Find the element with the largest Composite DigitProduct after sorting the elements in the vector pq.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> #include <vector> using namespace std; // Function to check if a number // is a composite number or not bool isComposite( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return false ; // Check if number is divisible by 2 or 3 if (n % 2 == 0 || n % 3 == 0) return true ; // Check if number is a multiple // of any other prime number for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return true ; return false ; } // Function to calculate the product // of digits of a number int digitProduct( int number) { // Stores the product of digits int product = 1; while (number > 0) { // Extract digits of a number product *= (number % 10); // Calculate product of digits number /= 10; } return product; } // Function to check if the product of digits // of a number is a composite number or not bool compositedigitProduct( int num) { // Stores product of digits int res = digitProduct(num); // If product of digits is equal to 1 if (res == 1) { return false ; } // If product of digits is not prime if (isComposite(res)) { return true ; } return false ; } // Function to find the number with largest // composite product of digits from the indices // not divisible by k from the given array int largestCompositeDigitProduct( int a[], int n, int k) { vector<pair< int , int > > pq; // Traverse the array for ( int i = 0; i < n; i++) { // If index is divisible by k if ((i % k) == 0) { continue ; } // Check if product of digits // is a composite number or not if (compositedigitProduct(a[i])) { int b = digitProduct(a[i]); pq.push_back(make_pair(b, a[i])); } } // Sort the products sort(pq.begin(), pq.end()); return pq.back().second; } // Driver Code int main() { int arr[] = { 233, 144, 89, 71, 13, 21, 11, 34, 55, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int k = 3; int ans = largestCompositeDigitProduct( arr, n, k); cout << ans << endl; return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG { static class pair { int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Function to check if a number // is a composite number or not static boolean isComposite( int n) { // Corner cases if (n <= 1 ) return false ; if (n <= 3 ) return false ; // Check if number is divisible by 2 or 3 if (n % 2 == 0 || n % 3 == 0 ) return true ; // Check if number is a multiple // of any other prime number for ( int i = 5 ; i * i <= n; i = i + 6 ) if (n % i == 0 || n % (i + 2 ) == 0 ) return true ; return false ; } // Function to calculate the product // of digits of a number static int digitProduct( int number) { // Stores the product of digits int product = 1 ; while (number > 0 ) { // Extract digits of a number product *= (number % 10 ); // Calculate product of digits number /= 10 ; } return product; } // Function to check if the product of digits // of a number is a composite number or not static boolean compositedigitProduct( int num) { // Stores product of digits int res = digitProduct(num); // If product of digits is equal to 1 if (res == 1 ) { return false ; } // If product of digits is not prime if (isComposite(res)) { return true ; } return false ; } // Function to find the number with largest // composite product of digits from the indices // not divisible by k from the given array static int largestCompositeDigitProduct( int a[], int n, int k) { Vector<pair> pq = new Vector<pair>(); // Traverse the array for ( int i = 0 ; i < n; i++) { // If index is divisible by k if ((i % k) == 0 ) { continue ; } // Check if product of digits // is a composite number or not if (compositedigitProduct(a[i])) { int b = digitProduct(a[i]); pq.add( new pair(b, a[i])); } } // Sort the products Collections.sort(pq, (x, y) -> x.first - y.first); return pq.get(pq.size() - 1 ).second; } // Driver Code public static void main(String[] args) { int arr[] = { 233 , 144 , 89 , 71 , 13 , 21 , 11 , 34 , 55 , 23 }; int n = arr.length; int k = 3 ; int ans = largestCompositeDigitProduct( arr, n, k); System.out.print(ans + "\n" ); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to implement # the above approach from math import ceil, sqrt # Function to check if a number # is a composite number or not def isComposite(n): # Corner cases if (n < = 1 ): return False if (n < = 3 ): return False # Check if number is divisible by 2 or 3 if (n % 2 = = 0 or n % 3 = = 0 ): return True # Check if number is a multiple # of any other prime number for i in range ( 5 , ceil(sqrt(n)), 6 ): if (n % i = = 0 or n % (i + 2 ) = = 0 ): return True return False # Function to calculate the product # of digits of a number def digitProduct(number): # Stores the product of digits product = 1 while (number > 0 ): # Extract digits of a number product * = (number % 10 ) # Calculate product of digits number / / = 10 return product # Function to check if the product of digits # of a number is a composite number or not def compositedigitProduct(num): # Stores product of digits res = digitProduct(num) # If product of digits is equal to 1 if (res = = 1 ): return False # If product of digits is not prime if (isComposite(res)): return True return False # Function to find the number with largest # composite product of digits from the indices # not divisible by k from the given array def largestCompositeDigitProduct(a, n, k): pq = [] # Traverse the array for i in range (n): # If index is divisible by k if ((i % k) = = 0 ): continue # Check if product of digits # is a composite number or not if (compositedigitProduct(a[i])): b = digitProduct(a[i]) pq.append([b, a[i]]) # Sort the products pq = sorted (pq) return pq[ - 1 ][ 1 ] # Driver Code if __name__ = = '__main__' : arr = [ 233 , 144 , 89 , 71 , 13 , 21 , 11 , 34 , 55 , 23 ] n = len (arr) k = 3 ans = largestCompositeDigitProduct(arr, n, k) print (ans) # This code is contributed by divyesh072019 |
C#
// C# program to implement // the above approach using System; using System.Collections.Generic; class GFG { class pair : IComparable<pair> { public int first, second; public pair( int first, int second) { this .first = first; this .second = second; } public int CompareTo(pair p) { return this .second-p.first; } } // Function to check if a number // is a composite number or not static bool isComposite( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return false ; // Check if number is divisible by 2 or 3 if (n % 2 == 0 || n % 3 == 0) return true ; // Check if number is a multiple // of any other prime number for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return true ; return false ; } // Function to calculate the product // of digits of a number static int digitProduct( int number) { // Stores the product of digits int product = 1; while (number > 0) { // Extract digits of a number product *= (number % 10); // Calculate product of digits number /= 10; } return product; } // Function to check if the product of digits // of a number is a composite number or not static bool compositedigitProduct( int num) { // Stores product of digits int res = digitProduct(num); // If product of digits is equal to 1 if (res == 1) { return false ; } // If product of digits is not prime if (isComposite(res)) { return true ; } return false ; } // Function to find the number with largest // composite product of digits from the indices // not divisible by k from the given array static int largestCompositeDigitProduct( int []a, int n, int k) { List<pair> pq = new List<pair>(); // Traverse the array for ( int i = 0; i < n; i++) { // If index is divisible by k if ((i % k) == 0) { continue ; } // Check if product of digits // is a composite number or not if (compositedigitProduct(a[i])) { int b = digitProduct(a[i]); pq.Add( new pair(b, a[i])); } } // Sort the products pq.Sort(); return pq[pq.Count - 1].second; } // Driver Code public static void Main(String[] args) { int []arr = { 233, 144, 89, 71, 13, 21, 11, 34, 55, 23 }; int n = arr.Length; int k = 3; int ans = largestCompositeDigitProduct( arr, n, k); Console.Write(ans + "\n" ); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to implement // the above approach class pair { constructor(first,second) { this .first = first; this .second = second; } } // Function to check if a number // is a composite number or not function isComposite(n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return false ; // Check if number is divisible by 2 or 3 if (n % 2 == 0 || n % 3 == 0) return true ; // Check if number is a multiple // of any other prime number for (let i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return true ; return false ; } // Function to calculate the product // of digits of a number function digitProduct(number) { // Stores the product of digits let product = 1; while (number > 0) { // Extract digits of a number product *= (number % 10); // Calculate product of digits number = Math.floor(number/10); } return product; } // Function to check if the product of digits // of a number is a composite number or not function compositedigitProduct(num) { // Stores product of digits let res = digitProduct(num); // If product of digits is equal to 1 if (res == 1) { return false ; } // If product of digits is not prime if (isComposite(res)) { return true ; } return false ; } // Function to find the number with largest // composite product of digits from the indices // not divisible by k from the given array function largestCompositeDigitProduct(a,n,k) { let pq = []; // Traverse the array for (let i = 0; i < n; i++) { // If index is divisible by k if ((i % k) == 0) { continue ; } // Check if product of digits // is a composite number or not if (compositedigitProduct(a[i])) { let b = digitProduct(a[i]); pq.push( new pair(b, a[i])); } } // Sort the products pq.sort( function (x, y) { return x.first - y.first}); return pq[pq.length-1].second; } // Driver Code let arr=[233, 144, 89, 71, 13, 21, 11, 34, 55, 23]; let n = arr.length; let k = 3; let ans = largestCompositeDigitProduct( arr, n, k); document.write(ans + "<br>" ); // This code is contributed by unknown2108 </script> |
89
Time Complexity: O(N)
Auxiliary Space: O(N)