Friday, January 10, 2025
Google search engine
HomeData Modelling & AICheck if given Array can be made a permutation of 1 to...

Check if given Array can be made a permutation of 1 to N by reducing elements by half

Given an array nums[] of size N, the task is to check whether the given array can be converted into a permutation of 1 to N after performing given operations any number of times (may be 0). An operation is defined as: Pick any element of the array say ‘x’, and replace it with ‘x/2’.

Note: In a permutation of 1 to N all the numbers in range [1, N] are present in any order and each number is present only once.

Examples:

Input: N = 4, nums[] = {1, 8, 25, 2}
Output: true
Explanation: Sequence of operations followed are listed below:
Replace 8 with 8/2 = 4, nums[] = {1, 4, 25, 2}
Replace 25 with 25/2 = 12, nums[] = {1, 4, 12, 2}
Replace 12 with 12/2 = 6, nums[] = {1, 4, 6, 2}
Replace 6 with 6/2 = 3, nums[] = {1, 4, 3, 2} (Here element from 1 to 4 is present exactly once)

Input: N = 4, nums[] = {24, 7, 16, 7}
Output: false

 

Approach: The solution to the problem is based on sorting. Create an array freq of type boolean and size (N+1) to keep track of the numbers of the desired permutation. Follow the below steps:

  • Sort the given array.
  • Traverse from the back of the array and at each step:
    • If val is less than N and freq[val] is false then mark it as true.
    • If val is greater than N or freq[val] is true then divide it by 2 while (val > 0 && freq[val] == true)
    • At last, check if the desired permutation is achieved or not.

Below is the implementation of the above approach:

C++




// C++ code to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check is it possible
// to make array or not
bool possibleOrNot(vector<int>& nums, int N)
{
 
  // Sorting array
  sort(nums.begin(), nums.end());
 
  // Initializing freq[] array which
  // keeps track of elements from 1 to N
  vector<bool> freq(N + 1, 0);
 
  // Iterating from backwards
  for (int i = N - 1; i >= 0; i--) {
    int val = nums[i];
 
    // Dividing val by 2 while
    // it is greater than N
    // or freq[val] is true
    while (val > N || (freq[val] && val >= 1)) {
      val /= 2;
    }
 
    // Updating freq array
    if (val != 0)
      freq[val] = true;
  }
 
  // Checking if every element from
  // 1 to N is present or not
  for (int i = 1; i < freq.size(); i++)
    if (!freq[i]) {
      return false;
    }
 
  return true;
}
 
// Driver Code
int main()
{
  int N = 4;
  vector<int> nums = { 1, 8, 25, 2 };
 
  bool ans = possibleOrNot(nums, N);
  cout << (ans);
 
  return 0;
}
 
  // This code is contributed by rakeshsahni


Java




// Java code to implement the above approach
import java.util.*;
 
class GFG {
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 4;
        int[] nums = { 1, 8, 25, 2 };
 
        boolean ans = possibleOrNot(nums, N);
        System.out.println(ans);
    }
 
    // Function to check is it possible
    // to make array or not
    public static boolean possibleOrNot(int[] nums,
                                        int N)
    {
        // Sorting array
        Arrays.sort(nums);
 
        // Initializing freq[] array which
        // keeps track of elements from 1 to N
        boolean[] freq = new boolean[N + 1];
 
        // Iterating from backwards
        for (int i = N - 1; i >= 0; i--) {
            int val = nums[i];
 
            // Dividing val by 2 while
            // it is greater than N
            // or freq[val] is true
            while (val > N || (freq[val]
                               && val >= 1)) {
                val /= 2;
            }
 
            // Updating freq array
            if (val != 0)
                freq[val] = true;
        }
 
        // Checking if every element from
        // 1 to N is present or not
        for (int i = 1; i < freq.length; i++)
            if (!freq[i]) {
                return false;
            }
 
        return true;
    }
}


Python3




# python3 code to implement the above approach
 
# Function to check is it possible
# to make array or not
def possibleOrNot(nums, N):
 
    # Sorting array
    nums.sort()
 
    # Initializing freq[] array which
    # keeps track of elements from 1 to N
    freq = [0 for _ in range(N + 1)]
 
    # Iterating from backwards
    for i in range(N - 1, -1, -1):
        val = nums[i]
 
        # Dividing val by 2 while
        # it is greater than N
        # or freq[val] is true
        while (val > N or (freq[val] and val >= 1)):
            val //= 2
 
        # Updating freq array
        if (val != 0):
            freq[val] = True
 
    # Checking if every element from
    # 1 to N is present or not
    for i in range(1, len(freq)):
        if (not freq[i]):
            return False
 
    return True
 
# Driver Code
if __name__ == "__main__":
 
    N = 4
    nums = [1, 8, 25, 2]
 
    ans = possibleOrNot(nums, N)
    print(ans)
 
    # This code is contributed by rakeshsahni


C#




using System;
 
public class GFG{
 
  // Function to check is it possible
  // to make array or not
  static bool possibleOrNot(int[] nums,
                            int N)
  {
    // Sorting array
    Array.Sort(nums);
 
    // Initializing freq[] array which
    // keeps track of elements from 1 to N
    bool[] freq = new bool[N + 1];
 
    // Iterating from backwards
    for (int i = N - 1; i >= 0; i--) {
      int val = nums[i];
 
      // Dividing val by 2 while
      // it is greater than N
      // or freq[val] is true
      while (val > N || (freq[val]
                         && val >= 1)) {
        val /= 2;
      }
 
      // Updating freq array
      if (val != 0)
        freq[val] = true;
    }
 
    // Checking if every element from
    // 1 to N is present or not
    for (int i = 1; i < freq.Length; i++)
      if (!freq[i]) {
        return false;
      }
 
    return true;
  }
 
  // Driver Code
  static public void Main (){
 
    int N = 4;
    int[] nums = { 1, 8, 25, 2 };
 
    bool ans = possibleOrNot(nums, N);
    if(ans == true)
      Console.WriteLine(1);
    else
      Console.WriteLine(0);
  }
}
 
// This code is contributed by hrithikgrg03188.


Javascript




<script>
// Javascript code to implement the above approach
 
// Function to check is it possible
// to make array or not
function possibleOrNot(nums, N)
{
 
    // Sorting array
    nums.sort((a, b) => a - b);
 
    // Initializing freq[] array which
    // keeps track of elements from 1 to N
    let freq = new Array(N + 1).fill(0)
 
    // Iterating from backwards
    for (let i = N - 1; i >= 0; i--) {
        let val = nums[i];
 
        // Dividing val by 2 while
        // it is greater than N
        // or freq[val] is true
        while (val > N || (freq[val] && val >= 1)) {
            val = Math.floor(val / 2);
        }
 
        // Updating freq array
        if (val != 0)
            freq[val] = true;
    }
 
    // Checking if every element from
    // 1 to N is present or not
    for (let i = 1; i < freq.length; i++)
        if (!freq[i]) {
            return false;
        }
 
    return true;
}
 
// Driver Code
let N = 4;
let nums = [1, 8, 25, 2]
 
let ans = possibleOrNot(nums, N);
document.write(ans);
 
// This code is contributed by saurabh_jaiswal.
</script>


 
 

Output

true

 

Time Complexity: O(N * log(N))
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
09 Feb, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments