Given a number N, the task is to find Nth 120-gon number.
A 120-gon number is a class of figurate numbers. It has 120 – sided polygon called 120-gon. The N-th 120-gon number count’s the 120 number of dots and all other dots are surrounding with a common sharing corner and make a pattern. The first few 120-gon numbers are 1, 120, 357, 712, 1185, 1776, …
Examples:
Input: N = 2
Output: 120
Explanation:
The second 120-gonol number is 120.
Input: N = 3
Output: 357
Approach: The N-th 120-gon number is given by the formula:
- Nth term of s sided polygon =
- Therefore Nth term of 120 sided polygon is
Below is the implementation of the above approach:
C++
// C++ implementation for above approach #include <bits/stdc++.h> using namespace std; // Function to find the // nth 120-gon Number int gonNum120( int n) { return (118 * n * n - 116 * n) / 2; } // Driver Code int main() { int n = 3; cout << gonNum120(n); return 0; } |
Java
// Java program for above approach class GFG{ // Function to find the // nth 120-gon Number static int gonNum120( int n) { return ( 118 * n * n - 116 * n) / 2 ; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.print(gonNum120(n)); } } // This code is contributed by shubham |
Python3
# Python3 implementation for above approach # Function to find the # nth 120-gon Number def gonNum120(n): return ( 118 * n * n - 116 * n) / / 2 ; # Driver Code n = 3 ; print (gonNum120(n)); # This code is contributed by Code_Mech |
C#
// C# program for above approach using System; class GFG{ // Function to find the // nth 120-gon Number static int gonNum120( int n) { return (118 * n * n - 116 * n) / 2; } // Driver code public static void Main(String[] args) { int n = 3; Console.Write(gonNum120(n)); } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // JavaScript implementation for above approach // Function to find the // nth 120-gon Number function gonNum120(n) { return (118 * n * n - 116 * n) / 2; } // Driver Code var n = 3; document.write(gonNum120(n)); </script> |
357
Time Complexity: O(1)
Reference: https://en.wikipedia.org/wiki/120-gon
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!