Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of squares that can be drawn without lifting the pencil

Count of squares that can be drawn without lifting the pencil

Given an integer N, the task is to find the count of squares of side 1 that can be drawn without lifting the pencil, starting at one corner of an N * N grid and never visiting an edge twice.
 

Input: N = 2 
Output:
 

Input: N = 3 
Output:
 

 

Approach: It can be observed that for the values of N = 1, 2, 3, …, a series will be formed as 1, 2, 5, 10, 17, 26, 37, 50, … whose Nth term is (N2 – (2 * N) + 2)
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// squares that can be formed
int countSquares(int n)
{
    return (pow(n, 2) - (2 * n) + 2);
}
 
// Driver code
int main()
{
    int n = 2;
 
    cout << countSquares(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count of
// squares that can be formed
static int countSquares(int n)
{
    return (int) (Math.pow(n, 2) - (2 * n) + 2);
}
 
// Driver code
public static void main(String []args)
{
    int n = 2;
    System.out.println(countSquares(n));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
# Function to return the count of
# squares that can be formed
def countSquares(n) :
 
    return (pow(n, 2) - (2 * n) + 2);
 
# Driver code
if __name__ == "__main__" :
 
    n = 2;
 
    print(countSquares(n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
                     
class GFG
{
 
    // Function to return the count of
    // squares that can be formed
    static int countSquares(int n)
    {
        return (int) (Math.Pow(n, 2) - (2 * n) + 2);
    }
     
    // Driver code
    public static void Main(String []args)
    {
        int n = 2;
        Console.WriteLine(countSquares(n));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of
// squares that can be formed
function countSquares(n)
{
    return (Math.pow(n, 2) - (2 * n) + 2);
}
 
// Driver code
var n = 2;
document.write(countSquares(n));
 
</script>


Output: 

2

 

Time Complexity: O(1)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
07 Mar, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments