Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMaximum length intersection of all K ranges among all given ranges

Maximum length intersection of all K ranges among all given ranges

Given an array arr[] consisting of N ranges of the form [L, R], the task is to select K ranges such that the intersection length of the K ranges is maximum.

Examples:

Input: arr[] = {{5, 15}, {1, 10}, {14, 50}, {30, 70}, {99, 100}}, K = 2
Output: 21
Explanation: Selecting ranges (14, 50) and (30, 70) would give the maximum answer. Therefore, the maximum length intersection of above 2 ranges is (50 – 30 + 1) = 21.

Input: arr[] = {{-8, 6}, {7, 9}, {-10, -5}, {-4, 5}}, K = 3
Output: 0

Input: arr[] = {{1, 10}, {2, 5}, {3, 7}, {3, 4}, {3, 5}, {3, 10}, {4, 7}}, K = 3

Fig.1

Output: 5
Explanation: Selecting ranges (1, 10), (3, 7), (3, 10), which will give us the maximum length possible.

Approach: The problem can be solved based on the following idea:

Sorting ranges according to { L, R } and considering each given range as a potential starting point L to our required answer as [L, Kth largest ending point of ranges seen so far].

Follow the steps mentioned below to implement the idea:

  • Use vector pair asc to store ranges in non-decreasing order of starting point l followed by ending point r
  • Traverse asc from the beginning and maintain min-heap (priority_queue) pq to store K largest ending point r of ranges seen so far.
  • Discard the values from the heap if it is less than the starting point l[i] of the current range i.
  • Update the answer as the maximum of previous answers we got and pq.top() –  l[i] + 1.

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to get maximum
// intersection length
int maxKRanges(vector<vector<int> > range, int k)
{
    int n = range.size();
    vector<pair<int, int> > asc;
    for (int i = 0; i < n; i++) {
        asc.push_back({ range[i][0], range[i][1] });
    }
 
    // Sorting ranges in
    // non-descending order
    sort(asc.begin(), asc.end());
 
    // Min-heap to store k largest ending
    // point of ranges seen so far
    priority_queue<int, vector<int>, greater<int> > pq;
 
    int ans = 0;
    for (int i = 0; i < n; i++) {
 
        // Ending point of ith range
        pq.push(asc[i].second);
 
        // Ranges having zero intersection
        while (!pq.empty() && pq.top() < asc[i].first)
            pq.pop();
 
        // Size upto k
        while (pq.size() > k)
            pq.pop();
 
        // Update answer
        if (pq.size() == k)
            ans = max(ans, pq.top() - asc[i].first + 1);
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    // Number of ranges
    int N = 5;
 
    // Number of ranges selected at a time
    int K = 2;
 
    vector<vector<int> > range = { { 5, 15 },
                                   { 1, 10 },
                                   { 14, 50 },
                                   { 30, 70 },
                                   { 99, 100 } };
 
    // Function call
    cout << maxKRanges(range, K) << endl;
 
    return 0;
}


Python3




# Python code to implement the approach
import heapq
 
# Function to get maximum
# intersection length
def maxKRanges(range_, k):
    n = len(range_)
    asc = []
    for i in range(n):
        asc.append((range_[i][0], range_[i][1]))
 
    # Sorting ranges in
    # non-descending order
    asc.sort()
 
    # Min-heap to store k largest ending
    # point of ranges seen so far
    pq = []
 
    ans = 0
    for i in range(n):
 
        # Ending point of ith range
        heapq.heappush(pq, asc[i][1])
 
        # Ranges having zero intersection
        while pq and pq[0] < asc[i][0]:
            heapq.heappop(pq)
 
        # Size upto k
        while len(pq) > k:
            heapq.heappop(pq)
 
        # Update answer
        if len(pq) == k:
            ans = max(ans, pq[0] - asc[i][0] + 1)
 
    return ans
 
 
# Driver Code
# Number of ranges
N = 5
 
# Number of ranges selected at a time
K = 2
 
range_ = [[5, 15],
          [1, 10],
          [14, 50],
          [30, 70],
          [99, 100]]
 
# Function call
print(maxKRanges(range_, K))


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class Program
{
  static int MaxKRanges(List<List<int>> range, int k)
  {
    int n = range.Count;
    List<Tuple<int, int>> asc = new List<Tuple<int, int>>();
    for (int i = 0; i < n; i++)
    {
      asc.Add(new Tuple<int, int>(range[i][0], range[i][1]));
    }
 
    // Sorting ranges in non-descending order
    asc.Sort();
 
    // SortedSet to store k largest ending point of ranges seen so far
    SortedSet<int> pq = new SortedSet<int>();
 
    int ans = 0;
    for (int i = 0; i < n; i++)
    {
      // Ending point of ith range
      pq.Add(asc[i].Item2);
 
      // Ranges having zero intersection
      while (pq.Count > 0 && pq.Min < asc[i].Item1)
        pq.Remove(pq.Min);
 
      // Size upto k
      while (pq.Count > k)
        pq.Remove(pq.Max);
 
      // Update answer
      if (pq.Count == k)
        ans = Math.Max(ans, pq.Min - asc[i].Item1 + 1);
    }
 
    return ans;
  }
 
  // Driver Code
  static void Main()
  {
    // Number of ranges
    int N = 5;
 
    // Number of ranges selected at a time
    int K = 2;
 
    List<List<int>> range = new List<List<int>>() {
      new List<int>(){ 5, 15 },
      new List<int>(){ 1, 10 },
      new List<int>(){ 14, 50 },
      new List<int>(){ 30, 70 },
      new List<int>(){ 99, 100 }
    };
 
    // Function call
    Console.WriteLine(MaxKRanges(range, K));
  }
}


Javascript




// Function to get maximum intersection length
function maxKRanges(range, k) {
    const n = range.length;
    const asc = [];
 
    for (let i = 0; i < n; i++) {
        asc.push([range[i][0], range[i][1]]);
    }
 
    // Sorting ranges in non-descending order
    asc.sort((a, b) => a[0] - b[0]);
 
    // Min-heap to store k largest ending
    // point of ranges seen so far
    const pq = [];
 
    let ans = 0;
    for (let i = 0; i < n; i++) {
        // Ending point of ith range
        pq.push(asc[i][1]);
 
        // Ranges having zero intersection
        while (pq.length && pq[0] < asc[i][0]) {
            pq.shift();
        }
 
        // Size upto k
        while (pq.length > k) {
            pq.shift();
        }
 
        // Update answer
        if (pq.length === k) {
            ans = Math.max(ans, pq[0] - asc[i][0] + 1);
        }
    }
 
    return ans;
}
 
// Driver code
// Number of ranges
const N = 5;
 
// Number of ranges selected at a time
const K = 2;
 
const range = [[5, 15],
               [1, 10],
               [14, 50],
               [30, 70],
               [99, 100]];
 
// Function call
console.log(maxKRanges(range, K));
 
// This code is contributed by Prajwal Kandekar


Java




import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.PriorityQueue;
 
class GFG {
  public static int maxKRanges(ArrayList<ArrayList<Integer>> range, int k) {
    int n = range.size();
    int[][] asc = new int[n][2];
    for (int i = 0; i < n; i++) {
      asc[i][0] = range.get(i).get(0);
      asc[i][1] = range.get(i).get(1);
    }
 
    // Sorting ranges in non-descending order
    Arrays.sort(asc, (a, b) -> a[0] - b[0]);
 
    // Min-heap to store k largest ending point of ranges seen so far
    PriorityQueue<Integer> pq = new PriorityQueue<>(k);
 
    int ans = 0;
    for (int i = 0; i < n; i++) {
      // Ending point of ith range
      pq.offer(asc[i][1]);
 
      // Ranges having zero intersection
      while (!pq.isEmpty() && pq.peek() < asc[i][0])
        pq.poll();
 
      // Size up to k
      while (pq.size() > k)
        pq.poll();
 
      // Update answer
      if (pq.size() == k)
        ans = Math.max(ans, pq.peek() - asc[i][0] + 1);
    }
 
    return ans;
  }
 
  public static void main(String[] args) {
    // Number of ranges
    int N = 5;
 
    // Number of ranges selected at a time
    int K = 2;
 
    ArrayList<ArrayList<Integer>> range = new ArrayList<>();
    range.add(new ArrayList<Integer>(Arrays.asList(5, 15)));
    range.add(new ArrayList<Integer>(Arrays.asList(1, 10)));
    range.add(new ArrayList<Integer>(Arrays.asList(14, 50)));
    range.add(new ArrayList<Integer>(Arrays.asList(30, 70)));
    range.add(new ArrayList<Integer>(Arrays.asList(99, 100)));
 
    // Function call
    System.out.println(maxKRanges(range, K));
  }
}


Output

21

Time Complexity: O(N * log(N)) 
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
28 Mar, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments