Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount of permutation such that GCD of all elements multiplied with position...

Count of permutation such that GCD of all elements multiplied with position is not 1

Given an integer array having N elements ranging from 1 to N and each element appearing exactly once. The task is to find the number of possible permutations such that the GCD of all elements multiplied with their position is greater than 1.

Note: As the answer can be very large, return the answer modulo 109 + 7

Examples:

Input: N = 2, arr[] = {1, 2}
Output: 1
Explanation: The only valid permutation will be is [2, 1] because GCD(1*2, 2*1) = 2.

Input: N = 4, arr[] = {4, 1, 3, 2}
Output: 4
Explanation:
The valid permutations will be 
[4, 3, 2, 1] with GCD(1*4, 2*3, 3*2, 4*1) = 2.
[2, 3, 4, 1] with GCD(1*2, 2*3, 3*4, 4*1) = 2.
[2, 1, 4, 3] with GCD(1*2, 2*1, 3*4, 4*3) = 2.
[4, 1, 2, 3] with GCD(1*4, 2*1, 3*2, 4*3) = 2.

 

Approach: The idea to solve the problem is as follows:

Try to make the product of position and the number even, then in that situation GCD will be at least 2.
So if N is odd then there will 1 more odd element than possible even positions. So no permutation is possible.
Otherwise 

  • the N/2 even elements can be arranged in (N/2)! ways.
  • For each of this arrangement N/2 odd elements can be arranged in (N/2)! ways.

So total number of possible ways are ((N/2)!)2.

Follow the below steps to solve this problem:

  • If N is odd then return 0.
  • Initialize one variable to store the answer (say ans = 1).
  • Traverse from i = 1 to N/2.
    • Make ans equal to ans * i * i % MOD.
    • Find the mod of ans.
  • Return ans.

Below is the implementation of the above approach.

C++




// C++ code to implement the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
const int MOD = 1000000007;
 
// Function to find
// the number of valid permutations
int ValidPerm(int n, int a[])
{
    // If n is odd
    if (n & 1) {
        return 0;
    }
    long long ans = 1;
 
    // Counting number of permutations
    for (int i = 1; i <= n / 2; ++i) {
        ans *= i * i % MOD;
        ans %= MOD;
    }
 
    // Return the number of
    // possible permutations
    return ans;
}
 
// Driver code
int main()
{
    int N = 4;
    int arr[N] = { 1, 3, 2, 4 };
 
    // Function call
    cout << ValidPerm(N, arr);
    return 0;
}


Java




// Java code to implement the above approach
import java.util.*;
public class GFG {
 
    static int MOD = 1000000007;
 
    // Function to find
    // the number of valid permutations
    static int ValidPerm(int n, int a[])
    {
        // If n is odd
        if ((n & 1) == 1) {
            return 0;
        }
        long ans = 1;
 
        // Counting number of permutations
        for (int i = 1; i <= n / 2; ++i) {
            ans *= i * i % MOD;
            ans %= MOD;
        }
 
        // Return the number of
        // possible permutations
        return (int)ans;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int N = 4;
        int arr[] = { 1, 3, 2, 4 };
 
        // Function call
        System.out.println(ValidPerm(N, arr));
    }
}
// This code is contributed by Samim Hossain Mondal.


Python3




# Python code to implement the above approach
MOD = 1000000007
 
# Function to find
# the number of valid permutations
def ValidPerm(n, a):
   
    # If n is odd
    if (n & 1):
        return 0
     
    ans = 1
 
    # Counting number of permutations
    for i in range(1,(n // 2)+1):
        ans *= i * i % MOD
        ans %= MOD
 
    # Return the number of
    # possible permutations
    return ans
 
# Driver code
 
N = 4
arr = [1, 3, 2, 4]
 
# Function call
print(ValidPerm(N, arr));
 
# This code is contributed by shinjanpatra


C#




// C# code to implement the above approach
using System;
public class GFG {
 
  static int MOD = 1000000007;
 
  // Function to find
  // the number of valid permutations
  static int ValidPerm(int n, int []a)
  {
    // If n is odd
    if ((n & 1) == 1) {
      return 0;
    }
    long ans = 1;
 
    // Counting number of permutations
    for (int i = 1; i <= n / 2; ++i) {
      ans *= i * i % MOD;
      ans %= MOD;
    }
 
    // Return the number of
    // possible permutations
    return (int)ans;
  }
 
  // Driver code
  public static void Main()
  {
    int N = 4;
    int []arr = { 1, 3, 2, 4 };
 
    // Function call
    Console.WriteLine(ValidPerm(N, arr));
  }
}
 
// This code is contributed by jana_sayantan.


Javascript




<script>
    // JavaScript code to implement the above approach
 
    const MOD = 1000000007;
 
    // Function to find
    // the number of valid permutations
    const ValidPerm = (n, a) => {
        // If n is odd
        if (n & 1) {
            return 0;
        }
        let ans = 1;
 
        // Counting number of permutations
        for (let i = 1; i <= n / 2; ++i) {
            ans *= i * i % MOD;
            ans %= MOD;
        }
 
        // Return the number of
        // possible permutations
        return ans;
    }
 
    // Driver code
 
    let N = 4;
    let arr = [1, 3, 2, 4];
 
    // Function call
    document.write(ValidPerm(N, arr));
 
// This code is contributed by rakeshsahni
 
</script>


Output

4

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
16 May, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments