Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of numbers in range with only 2 or 7 as...

Count of numbers in range [L, R] with only 2 or 7 as prime factors

Given two integers L and R, the task is to find the count of numbers in the range [L, R] which have only 2 or 7 as their prime factors.

Examples:

Input: L = 0, R = 0
Output:
Explanation: 0 is not divisible by 2 or 7

Input: L = 0, R = 2
Output:
Explanation: Only 2 is the number between the range which has 2 as a factor, hence count is 1.

Input: L = 1, R = 15
Output: 5
Explanation: 2, 4, 7, 8 & 14 are the numbers which has factors as 2 or 7, hence, count is 5

 

Naive Approach: The simple approach is to generate all prime factors of each number in the range [L, R] and check if the factors are only 2 or 7.

Follow the steps to solve the problem:

  • Traverse from i = L to R:
    • Store all prime factors of i in a vector (say factors).
    • Traverse the vector to see if factors other than 2 or 7 are present or not.
    • If i is divisible by only 2 or 7 then increment count otherwise.
  • Return pair of special and regular as the final answer.

Below is the implementation for the above approach:

C++14




// C++ code for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find regular or special numbers
pair<int,int> SpecialorRegular(int L, int R)
{
    int regular = 0, special = 0, temp, i, j;
    vector<int>factors;
     
    // Base cases
    if(L > R || L < 0|| R < 0)
    return {-1, -1};
    else if(R < 2)
    regular += R - L + 1;
    else regular += 2 - L;
    L = 2;
     
    for(i = L; i <= R; i++){
        temp = i;
        factors.clear();
         
        for(j = 2; j * j <= i; j++)
        {
            while(temp % j == 0){
            factors.push_back(j);
            temp /= j;
            }
        }
        if(temp > 1)
        factors.push_back(temp);
         
        for(j = 0; j < factors.size(); j++){
            if(factors[j] != 7
               && factors[j] != 2)
            break;
        }
         
        if(j == factors.size())
        special++;
        else regular++;
    }
     
    return {special, regular};
}
 
//Function to print
void print(int L, int R){
    pair<int, int>ans
        = SpecialorRegular(L, R);
    cout << ans.first;
}
 
//Driver code
int main()
{
    int L = 0;
    int R = 2;
     
    // Function Call
    print(L, R);
    return 0;
}


Java




// Java program for above approach
import java.util.ArrayList;
 
class GFG {
 
  // Function to find regular or special numbers
  static int[] SpecialorRegular(int L, int R)
  {
    int regular = 0, special = 0, temp, i, j;
    ArrayList<Integer> factors
      = new ArrayList<Integer>();
 
    // Base cases
    if (L > R || L < 0 || R < 0) {
      int[] pair = { -1, -1 };
      return pair;
    }
    else if (R < 2)
      regular += R - L + 1;
    else
      regular += 2 - L;
    L = 2;
 
    for (i = L; i <= R; i++) {
      temp = i;
      factors.clear();
 
      for (j = 2; j * j <= i; j++) {
        while (temp % j == 0) {
          factors.add(j);
          temp /= j;
        }
      }
      if (temp > 1)
        factors.add(temp);
 
      for (j = 0; j < factors.size(); j++) {
        if ((factors.get(j) != 7)
            && (factors.get(j) != 2))
          break;
      }
 
      if (j == factors.size())
        special++;
      else
        regular++;
    }
 
    int[] pair = { special, regular };
    return pair;
  }
 
  // Function to print
  static void print(int L, int R)
  {
    int[] ans = SpecialorRegular(L, R);
    System.out.print(ans[0]);
  }
 
  // driver code
  public static void main(String[] args)
  {
    int L = 0;
    int R = 2;
 
    // Function Call
    print(L, R);
  }
}
 
// This code is contributed by phasing17


Python3




# Python3 code for the above approach
 
# Function to find regular or special numbers
def SpecialorRegular(L, R):
    regular, special = 0, 0
    factors = []
     
    # base cases
    if L > R or L < 0 or R < 0:
        return [-1, -1]
    elif R < 2:
        regular += R - L + 1
    else:
        regular += 2 - L
    L = 2
    for i in range(L, R + 1):
        temp = i
        factors = []
        for j in range(2, 1 + int(i ** 0.5)):
            while not temp % j:
                factors.append(j)
                temp //= j
        if temp > 1:
            factors.append(temp)
        j = 0
        while j < len(factors):
            if factors[j] != 7 and factors[j] != 2:
                break
            j += 1
        if j == len(factors):
            special += 1
        else:
            regular += 1
    return [special, regular]
   
# Function to print
def prints(L, R):
    ans = SpecialorRegular(L, R)
    print(ans[0])
 
# Driver code
L, R = 0, 2
 
# Function Call
prints(L, R)
 
# This code is contributed by phasing17


C#




// C# code for the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to find regular or special numbers
  static Tuple<int,int> SpecialorRegular(int L, int R)
  {
    int regular = 0, special = 0, temp, i, j;
    List<int>factors=new List<int>();
 
    // Base cases
    if(L > R || L < 0|| R < 0)
      return new Tuple<int,int>(-1,-1);
    else if(R < 2)
      regular += R - L + 1;
    else
      regular += 2 - L;
    L = 2;
 
    for(i = L; i <= R; i++){
      temp = i;
      factors.Clear();
 
      for(j = 2; j * j <= i; j++)
      {
        while(temp % j == 0){
          factors.Add(j);
          temp /= j;
        }
      }
      if(temp > 1)
        factors.Add(temp);
 
      for(j = 0; j < factors.Count; j++){
        if(factors[j] != 7
           && factors[j] != 2)
          break;
      }
 
      if(j == factors.Count)
        special++;
      else
        regular++;
    }
 
    return new Tuple<int,int>(special, regular);
  }
 
  // Function to print
  static void print(int L, int R)
  {
    Tuple<int, int>ans = SpecialorRegular(L, R);
    Console.Write(ans.Item1);
  }
 
  // Driver code
  static void Main(string[] args)
  {
    int L = 0;
    int R = 2;
 
    // Function Call
    print(L, R);
  }
}


Javascript




<script>
    // JavaScript code for the above approach
 
    // Function to find regular or special numbers
    const SpecialorRegular = (L, R) => {
        let regular = 0, special = 0, temp, i, j;
        let factors = [];
 
        // Base cases
        if (L > R || L < 0 || R < 0)
            return [-1, -1];
        else if (R < 2)
            regular += R - L + 1;
        else regular += 2 - L;
        L = 2;
 
        for (i = L; i <= R; i++) {
            temp = i;
            factors = [];
 
            for (j = 2; j * j <= i; j++) {
                while (temp % j == 0) {
                    factors.push(j);
                    temp = parseInt(temp / j);
                }
            }
            if (temp > 1)
                factors.push(temp);
 
            for (j = 0; j < factors.length; j++) {
                if (factors[j] != 7
                    && factors[j] != 2)
                    break;
            }
 
            if (j == factors.length)
                special++;
            else regular++;
        }
 
        return [special, regular];
    }
 
    // Function to print
    const print = (L, R) => {
        let ans = SpecialorRegular(L, R);
        document.write(ans[0]);
    }
 
    // Driver code
 
    let L = 0;
    let R = 2;
 
    // Function Call
    print(L, R);
 
// This code is contributed by rakeshsahni
 
</script>


Output

1

Time Complexity: O((R – L)(3 / 2))
Auxiliary Space: O(log R)

Efficient Approach: The problem can be solved more efficiently follow the mentioned observation:

Observation:

Generate all the numbers of form 2*k or 7*k or 2*7*k using recursion where k is also in one of the previous three forms.

Follow the steps to solve the problem:

  • Initialize an unordered map as visited to store the numbers visited already and count as 0 to store the count of such numbers.
  • Prepare a recursive function to generate the numbers as shown in the observation.
  • If a generated number (say temp) is:
    • Within the range [L, R] and not already visited then mark it as visited and increment count.
    • Exceeds R or is already visited return from that recursion and try other options.
  • Return the count as the final required answer.

Below is the implementation for the above approach:

C++14




// C++ code for the above approach:
 
#include <bits/stdc++.h>
using namespace std;
 
int special = 0;
unordered_map<int, bool> visited;
 
// Function to find special numbers
void countSpecial(int L, int R, int temp)
{
 
    // Base cases
    if (L > R) {
        special = -1;
        return;
    }
    else if (L < 0 || R < 0) {
        special = -1;
        return;
    }
    else if (temp > R)
        return;
 
    if (L <= temp && temp <= R && temp != 1
        && !visited[temp]) {
        special++;
        visited[temp] = 1;
    }
 
    countSpecial(L, R, temp * 2);
    countSpecial(L, R, temp * 7);
}
 
// Print function
void print(int L, int R)
{
    countSpecial(L, R, 1);
    if (special == -1)
        cout << -1 << " " << -1;
    else
        cout << special;
}
 
// Driver code
int main()
{
    int L = 0;
    int R = 2;
 
    // Function call
    print(L, R);
    return 0;
}


Java




// Java program for above approach
import java.io.*;
import java.util.*;
import java.util.ArrayList;
 
class GFG {
 
static int special = 0;
private static HashMap<Integer, Boolean> visited = new HashMap<>();
  
// Function to find special numbers
static void countSpecial(int L, int R, int temp)
{
  
    // Base cases
    if (L > R) {
        special = -1;
        return;
    }
    else if (L < 0 || R < 0) {
        special = -1;
        return;
    }
    else if (temp > R)
        return;
     
    if (L <= temp && temp <= R && temp != 1 && !visited.containsKey(temp)) {
        special++;
        visited.put(temp,true);
    }
  
    countSpecial(L, R, temp * 2);
    countSpecial(L, R, temp * 7);
}
// Function to print
static void print(int L, int R)
{
    countSpecial(L, R, 1);
    if (special == -1)
    System.out.print("-1 -1");
    else
         System.out.print(special);
}
 
// driver code
public static void main(String[] args)
{
    int L = 0;
    int R = 2;
 
    // Function Call
    print(L, R);
}
}
 
// This code is contributed by Pushpesh Raj


Python3




# Python code for the above approach
special = 0
visited = {}
 
# Function to find special numbers
def countSpecial(L, R, temp):
 
    global special, visited
 
    # Base cases
    if (L > R):
        special = -1
        return
 
    elif (L < 0 or R < 0):
        special = -1
        return
 
    elif (temp > R):
        return
 
    if (L <= temp and temp <= R and temp != 1 and temp not in visited):
        special += 1
        visited[temp] = 1
 
    countSpecial(L, R, temp * 2)
    countSpecial(L, R, temp * 7)
 
# Print function
def Print(L, R):
    countSpecial(L, R, 1)
    if (special == -1):
        print("-1" + " " + "-1")
    else:
        print(special)
 
# Driver code
L = 0
R = 2
 
# Function call
Print(L, R)
 
# This code is contributed by shinjanpatra


C#




// C# program for above approach
using System;
using System.Collections.Generic;
 
class GFG {
  static int special = 0;
  private static Dictionary<int, bool> visited = new Dictionary<int, bool>();
 
  // Function to find special numbers
  static void CountSpecial(int L, int R, int temp) {
      // Base cases
    if (L > R) {
      special = -1;
      return;
    } else if (L < 0 || R < 0) {
      special = -1;
      return;
    } else if (temp > R)
      return;
 
    if (L <= temp && temp <= R && temp != 1 && !visited.ContainsKey(temp)) {
      special++;
      visited[temp] = true;
    }
 
    CountSpecial(L, R, temp * 2);
    CountSpecial(L, R, temp * 7);
  }
   
  // Function to print
  static void Print(int L, int R) {
    CountSpecial(L, R, 1);
    if (special == -1)
      Console.WriteLine("-1 -1");
    else
      Console.WriteLine(special);
  }
   
  // driver code
  public static void Main(string[] args) {
    int L = 0;
    int R = 2;
    // Function Call
    Print(L, R);
  }
}
 
// This code is contributed by Utkarsh


Javascript




<script>
       // JavaScript code for the above approach
       let special = 0;
       let visited = new Map();
 
       // Function to find special numbers
       function countSpecial(L, R, temp) {
 
           // Base cases
           if (L > R) {
               special = -1;
               return;
           }
           else if (L < 0 || R < 0) {
               special = -1;
               return;
           }
           else if (temp > R)
               return;
 
           if (L <= temp && temp <= R && temp != 1
               && !visited.has(temp)) {
               special++;
               visited.set(temp,1);
           }
 
           countSpecial(L, R, temp * 2);
           countSpecial(L, R, temp * 7);
       }
 
       // Print function
       function print(L, R) {
           countSpecial(L, R, 1);
           if (special == -1)
               document.write("-1" + " " + "-1");
           else
               document.write(special);
       }
 
       // Driver code
       let L = 0;
       let R = 2;
 
       // Function call
       print(L, R);
 
   // This code is contributed by Potta Lokesh
   </script>


Output

1

Time Complexity: O(R)
Auxiliary Space: O(R – L)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
09 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments