Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of subsets with sum one less than the sum of Array

Count of subsets with sum one less than the sum of Array

Given an array arr[ ] of size N. The task is to find the no of subsets with sum as (sum of the array – 1) when 0 occurs in an array or return -1 if there is no subset possible. 

 Examples: 

Input: arr[ ] : {3, 0, 5, 2, 4}  
Output: -1
Explanation: sum of array arr[ ] is 14 and there is not any subset with sum 13.
Input: arr[ ] : {0, 0, 2, 1}  
Output: 4
Explanation: sum of array arr[ ]  is 3 and {0, 2}, {0, 2}, {0, 0, 2}, {2} are the four subsets with sum 2 .

 

Naive Approach: The task can be solved by generating all possible subsets of the array using recursion, and increment the count if a subset with sum as (sum of the array – 1) is encountered.
Below is the implementation of the above approach:

C++




// C++ program to print the count of
// subsets with sum equal to the given value X
 
#include <bits/stdc++.h>
using namespace std;
 
// Recursive function to return the count
// of subsets with sum equal to the given value
int subsetSum(int arr[], int n, int i,
              int sum, int count)
{
    // The recursion is stopped at N-th level
    // where all the subsets of the given array
    // have been checked
    if (i == n) {
 
        // Incrementing the count if sum is
        // equal to 0 and returning the count
        if (sum == 0) {
            count++;
        }
        return count;
    }
 
    // Recursively calling the
    // function for two cases
    // Either the element can be
    // counted in the subset
    // If the element is counted,
    // then the remaining sum
    // to be checked is
    // sum - the selected element
    // If the element is not included,
    // then the remaining sum
    // to be checked is the total sum
    count = subsetSum(arr, n, i + 1,
                      sum - arr[i], count);
    count = subsetSum(arr, n, i + 1,
                      sum, count);
    return count == 0 ? -1 : count;
}
 
// Driver code
int main()
{
    int arr[] = { 0, 0, 2, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Sum of array - 1
    int sum = accumulate(arr, arr + n, 0) - 1;
    cout << subsetSum(arr, n, 0, sum, 0);
}


Java




// Java program to print the count of
// subsets with sum equal to the given value X
 
public class GFG {
     
    // Recursive function to return the count
    // of subsets with sum equal to the given value
    static int subsetSum(int arr[], int n, int i,
                  int sum, int count)
    {
        // The recursion is stopped at N-th level
        // where all the subsets of the given array
        // have been checked
        if (i == n) {
     
            // Incrementing the count if sum is
            // equal to 0 and returning the count
            if (sum == 0) {
                count++;
            }
            return count;
        }
     
        // Recursively calling the
        // function for two cases
        // Either the element can be
        // counted in the subset
        // If the element is counted,
        // then the remaining sum
        // to be checked is
        // sum - the selected element
        // If the element is not included,
        // then the remaining sum
        // to be checked is the total sum
        count = subsetSum(arr, n, i + 1,
                          sum - arr[i], count);
        count = subsetSum(arr, n, i + 1,
                          sum, count);
        return count == 0 ? -1 : count;
    }
     
    static int accumulate(int []arr)
    {
        int sum = 0;
        for(int i = 0; i < arr.length; i++)
            sum += arr[i];
             
        return sum;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 0, 0, 2, 1 };
        int n = arr.length;
     
        // Sum of array - 1
        int sum = accumulate(arr) - 1;
         
        System.out.println(subsetSum(arr, n, 0, sum, 0));
    }
}
 
// This code is contributed by AnkThon


Python3




# Python program to print the count of
# subsets with sum equal to the given value X
 
# Recursive function to return the count
# of subsets with sum equal to the given value
def subsetSum(arr, n, i, sum, count):
 
    # The recursion is stopped at N-th level
    # where all the subsets of the given array
    # have been checked
    if (i == n):
 
        # Incrementing the count if sum is
        # equal to 0 and returning the count
        if (sum == 0):
            count += 1
        return count
 
    # Recursively calling the
    # function for two cases
    # Either the element can be
    # counted in the subset
    # If the element is counted,
    # then the remaining sum
    # to be checked is
    # sum - the selected element
    # If the element is not included,
    # then the remaining sum
    # to be checked is the total sum
    count = subsetSum(arr, n, i + 1,
                      sum - arr[i], count)
    count = subsetSum(arr, n, i + 1,
                      sum, count)
    return - 1 if count == 0 else count
 
 
def accumulate(arr):
    sum = 0
    for i in range(len(arr)):
        sum += arr[i]
    return sum
 
# Driver code
arr = [0, 0, 2, 1]
n = len(arr)
 
# Sum of array - 1
sum = accumulate(arr) - 1
print(subsetSum(arr, n, 0, sum, 0))
 
# This code is contributed by gfgking


C#




// C# program to print the count of
// subsets with sum equal to the given value X
 
using System;
 
public class GFG {
     
    // Recursive function to return the count
    // of subsets with sum equal to the given value
    static int subsetSum(int []arr, int n, int i,
                int sum, int count)
    {
        // The recursion is stopped at N-th level
        // where all the subsets of the given array
        // have been checked
        if (i == n) {
     
            // Incrementing the count if sum is
            // equal to 0 and returning the count
            if (sum == 0) {
                count++;
            }
            return count;
        }
     
        // Recursively calling the
        // function for two cases
        // Either the element can be
        // counted in the subset
        // If the element is counted,
        // then the remaining sum
        // to be checked is
        // sum - the selected element
        // If the element is not included,
        // then the remaining sum
        // to be checked is the total sum
        count = subsetSum(arr, n, i + 1,
                        sum - arr[i], count);
        count = subsetSum(arr, n, i + 1,
                        sum, count);
        return count == 0 ? -1 : count;
    }
     
    static int accumulate(int []arr)
    {
        int sum = 0;
        for(int i = 0; i < arr.Length; i++)
            sum += arr[i];
             
        return sum;
    }
     
    // Driver code
    public static void Main (string[] args)
    {
        int []arr = { 0, 0, 2, 1 };
        int n = arr.Length;
     
        // Sum of array - 1
        int sum = accumulate(arr) - 1;
         
        Console.WriteLine(subsetSum(arr, n, 0, sum, 0));
    }
}
 
// This code is contributed by AnkThon


Javascript




<script>
        // JavaScript program to print the count of
        // subsets with sum equal to the given value X
 
        // Recursive function to return the count
        // of subsets with sum equal to the given value
        function subsetSum(arr, n, i,
            sum, count)
        {
         
            // The recursion is stopped at N-th level
            // where all the subsets of the given array
            // have been checked
            if (i == n) {
 
                // Incrementing the count if sum is
                // equal to 0 and returning the count
                if (sum == 0) {
                    count++;
                }
                return count;
            }
 
            // Recursively calling the
            // function for two cases
            // Either the element can be
            // counted in the subset
            // If the element is counted,
            // then the remaining sum
            // to be checked is
            // sum - the selected element
            // If the element is not included,
            // then the remaining sum
            // to be checked is the total sum
            count = subsetSum(arr, n, i + 1,
                sum - arr[i], count);
            count = subsetSum(arr, n, i + 1,
                sum, count);
            return count == 0 ? -1 : count;
        }
 
        function accumulate(arr) {
            let sum = 0;
            for (let i = 0; i < arr.length; i++) {
                sum += arr[i];
            }
            return sum;
        }
         
        // Driver code
 
        let arr = [0, 0, 2, 1];
        let n = arr.length;
 
        // Sum of array - 1
        let sum = accumulate(arr) - 1;
        document.write(subsetSum(arr, n, 0, sum, 0));
 
    // This code is contributed by Potta Lokesh
    </script>


Output: 

4

 

Time complexity: O(2n), where n = array length
Auxiliary Space: O(n), recursion stack space
Efficient Approach:  The above approach can be optimized by finding a possible subset with sum as (array_sum – 1) by removing 0s and one 1 from the array so that the subset-sum becomes equal to (sum of the array – 1 )

  • If there are k zeroes in the array, then there are 2^k (k is the number of zeroes) ways to remove 0 from the array.
  • The multiplication of these two (no of ways to remove 0 and no of ways to remove 1) results in the no of possible subsets.

Below is the implementation of the above code:             

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the no of
// possible subsets
int subsetCount(int arr[], int n)
{
    // Count the no of 0s and 1s
    // in array
    int zeros = 0, ones = 0;
 
    for (int i = 0; i < n; i++) {
        if (arr[i] == 0) {
            zeros++;
        }
        else if (arr[i] == 1) {
            ones++;
        }
    }
 
    // Store no of ways to remove 0
    int no_of_ways_0 = pow(2, zeros);
 
    // Store no of ways to remove 1
    int no_of_ways_1 = ones;
 
    // Store the total count of subsets
    int count_subset = no_of_ways_0
                       * no_of_ways_1;
 
    // If there is no subset possible
    // with required sum, return -1
    if (count_subset == 0)
        return -1;
    return count_subset;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 0, 0, 2, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << subsetCount(arr, n);
}


Java




// Java implementation of the above approach
import java.util.*;
public class GFG
{
// Function to find the no of
// possible subsets
static int subsetCount(int []arr, int n)
{
    // Count the no of 0s and 1s
    // in array
    int zeros = 0, ones = 0;
 
    for (int i = 0; i < n; i++) {
        if (arr[i] == 0) {
            zeros++;
        }
        else if (arr[i] == 1) {
            ones++;
        }
    }
 
    // Store no of ways to remove 0
    int no_of_ways_0 = (int)Math.pow(2, zeros);
 
    // Store no of ways to remove 1
    int no_of_ways_1 = ones;
 
    // Store the total count of subsets
    int count_subset = no_of_ways_0
                       * no_of_ways_1;
 
    // If there is no subset possible
    // with required sum, return -1
    if (count_subset == 0)
        return -1;
    return count_subset;
}
 
// Driver Code
public static void main(String args[])
{
 
    int []arr = { 0, 0, 2, 1 };
    int n = arr.length;
    System.out.println(subsetCount(arr, n));
}
}
// This code is contributed by Samim Hossain Mondal.


Python3




# Python 3 implementation of the above approach
 
# Function to find the no of
# possible subsets
 
 
def subsetCount(arr, n):
 
    # Count the no of 0s and 1s
    # in array
    zeros = 0
    ones = 0
 
    for i in range(n):
        if (arr[i] == 0):
            zeros += 1
 
        elif (arr[i] == 1):
            ones += 1
 
    # Store no of ways to remove 0
    no_of_ways_0 = pow(2, zeros)
 
    # Store no of ways to remove 1
    no_of_ways_1 = ones
 
    # Store the total count of subsets
    count_subset = no_of_ways_0 * no_of_ways_1
 
    # If there is no subset possible
    # with required sum, return -1
    if (count_subset == 0):
        return -1
    return count_subset
 
 
# Driver Code
if __name__ == "__main__":
 
    arr = [0, 0, 2, 1]
    n = len(arr)
    print(subsetCount(arr, n))
 
    # This code is contributed by ukasp.


C#




// C# implementation of the above approach
using System;
 
class GFG
{
// Function to find the no of
// possible subsets
static int subsetCount(int []arr, int n)
{
    // Count the no of 0s and 1s
    // in array
    int zeros = 0, ones = 0;
 
    for (int i = 0; i < n; i++) {
        if (arr[i] == 0) {
            zeros++;
        }
        else if (arr[i] == 1) {
            ones++;
        }
    }
 
    // Store no of ways to remove 0
    int no_of_ways_0 = (int)Math.Pow(2, zeros);
 
    // Store no of ways to remove 1
    int no_of_ways_1 = ones;
 
    // Store the total count of subsets
    int count_subset = no_of_ways_0
                    * no_of_ways_1;
 
    // If there is no subset possible
    // with required sum, return -1
    if (count_subset == 0)
        return -1;
    return count_subset;
}
 
// Driver Code
public static void Main()
{
 
    int []arr = { 0, 0, 2, 1 };
    int n = arr.Length;
    Console.Write(subsetCount(arr, n));
}
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
// Javascript implementation of the above approach
 
// Function to find the no of
// possible subsets
function subsetCount(arr, n)
{
    // Count the no of 0s and 1s
    // in array
    let zeros = 0, ones = 0;
 
    for (let i = 0; i < n; i++) {
        if (arr[i] == 0) {
            zeros++;
        }
        else if (arr[i] == 1) {
            ones++;
        }
    }
 
    // Store no of ways to remove 0
    let no_of_ways_0 = Math.pow(2, zeros);
 
    // Store no of ways to remove 1
    let no_of_ways_1 = ones;
 
    // Store the total count of subsets
    let count_subset = no_of_ways_0
                       * no_of_ways_1;
 
    // If there is no subset possible
    // with required sum, return -1
    if (count_subset == 0)
        return -1;
    return count_subset;
}
 
// Driver Code
let arr = [ 0, 0, 2, 1 ];
let n = arr.length;
document.write(subsetCount(arr, n));
 
// This code is contributed by Samim Hossain Mondal.
</script>


Output

4

Time complexity: O(n), where n = array length
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
23 Nov, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments