Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIMinimum moves to visit Matrix cells

Minimum moves to visit Matrix cells

Given a matrix of dimension M * N filled with values 0 (Cell that can be visited), 1 (Starting point), and 2 (Cell that cannot be visited), the task is to determine the minimum operations to visit all the cells filled with 0 and valid directions to move are up, down, left, and right. If it is impossible to visit all cells filled with 0, then return -1.

Examples: 

Input: Matrix[R][C] = {{1, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {2, 2, 0, 0, 0}, {0, 0, 0, 0, 0}}
Output: The Minimum operations to visit all cells: 7
Explanation: Initially the Starting Point is at 0, 0 in Matrix.  

  • In 1st operation, we can visit Matrix[0][1] and Matrix[1][0]. In 2nd operation, we can visit Matrix[1][1]  and Matrix[0][2].
  • In 3rd operation, we can visit Matrix[0][3]  and Matrix[1][2]. In 4th operation, we can visit Matrix[0][4]  and Matrix[1][3] and Matrix[1][2].
  • In 5th operation, we can visit Matrix[1][4]  and Matrix[2][3] and Matrix[3][2]. In 6th operation, we can visit Matrix[2][4]  and Matrix[3][4] and Matrix[3][].
  • In 7th operation, we can visit Matrix[3][0] and Matrix[3][4]. The Minimum operations Required to visit all cells is 7.

Input: Matrix[R][C] = {{0, 0, 0, 0, 0}, {0, 0, 1, 0, 0}, {2, 2, 0, 0, 0}, {0, 0, 0, 0, 0}}
Output: The Minimum operations to visit all cells: 4

Approach: To solve the problem follow the below idea:

The idea is to use Breadth First Search to traverse the matrix starting from cell with value 1 and keep track of the number of operations taken to reach each cell with value 0 and create a bool visited array to keep track of the visited cells.

Below are the steps for the above approach:

  • Initialize two variables n and m to store the size of the matrix and create a queue to store cells to be visited.
  • Create a 2D visited array of the same size as the matrix and initialize all elements to 0.
  • Iterate through the matrix and add the starting cell with value 1 into the queue and mark the cell as visited in the visited array.
  • Run a loop till the queue becomes empty.
  • Dequeue the front element and for each dequeued element, check its neighboring cells in the four directions (up, down, left, right) and add them into the queue if the neighboring cell is valid, the cell has not been visited before and the neighboring cell has a value of 0 and marks the neighboring cell as visited in the visited array and increment operation count.
  • While enqueuing neighboring cells, keep track of the maximum operation count so far that represents the minimum number of steps required to visit all cells with a value of 0.
  • Iterate through the visited array and check if any cell with value 0 was not visited, return -1.
  • Return the maximum operation count as the minimum number of steps required to visit all cells with the value 0.

Below is the implementation for the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
int minOperations(vector<vector<int> >& Matrix)
{
    int n = Matrix.size();
    int m = Matrix[0].size();
    queue<pair<pair<int, int>, int> > q;
 
    // vis array
    int vis[n][m];
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (Matrix[i][j] == 1) {
                q.push({ {
                             i,
                             j,
                         },
                         0 });
                vis[i][j] = 1;
            }
            else {
                vis[i][j] = 0;
            }
        }
    }
 
    // for all four directions
    int forRow[] = { -1, 0, +1, 0 };
    int forCol[] = { 0, +1, 0, -1 };
 
    int operations = 0;
 
    // Start iteating through the Queue
    while (!q.empty()) {
        int t = q.front().second;
        int Crow = q.front().first.first;
        int Ccol = q.front().first.second;
        operations = max(operations, t);
        q.pop();
        for (int i = 0; i < 4; i++) {
            int NewRow = Crow + forRow[i];
            int NewCol = Ccol + forCol[i];
            if (NewRow >= 0 && NewRow < n && NewCol >= 0
                && NewCol < m && !vis[NewRow][NewCol]
                && Matrix[NewRow][NewCol] == 0) {
                q.push({ { NewRow, NewCol }, t + 1 });
                vis[NewRow][NewCol] = 1;
            }
        }
    }
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (vis[i][j] != 1 && Matrix[i][j] == 0) {
                return -1;
            }
        }
    }
    return operations;
}
 
// Drivers code
int main()
{
    vector<vector<int> > Matrix = { { 1, 0, 0, 0, 0 },
                                    { 0, 0, 0, 0, 0 },
                                    { 2, 2, 0, 0, 0 },
                                    { 0, 0, 0, 0, 0 } };
    int Ans = minOperations(Matrix);
    if (Ans == -1)
        cout << "-1" << endl;
    else
        cout << "The Minimum operations to visit all cells:"
             << Ans << endl;
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
  public static int minOperations(int[][] matrix)
  {
    int n = matrix.length;
    int m = matrix[0].length;
    Queue<int[]> q = new LinkedList<>();
 
    // vis array
    int[][] vis = new int[n][m];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        if (matrix[i][j] == 1) {
          q.offer(new int[] { i, j, 0 });
          vis[i][j] = 1;
        }
        else {
          vis[i][j] = 0;
        }
      }
    }
 
    // for all four directions
    int[] forRow = { -1, 0, +1, 0 };
    int[] forCol = { 0, +1, 0, -1 };
 
    int operations = 0;
 
    // Start iterating through the Queue
    while (!q.isEmpty()) {
      int[] curr = q.poll();
      int t = curr[2];
      int Crow = curr[0];
      int Ccol = curr[1];
      operations = Math.max(operations, t);
      for (int i = 0; i < 4; i++) {
        int NewRow = Crow + forRow[i];
        int NewCol = Ccol + forCol[i];
        if (NewRow >= 0 && NewRow < n && NewCol >= 0
            && NewCol < m
            && vis[NewRow][NewCol] == 0
            && matrix[NewRow][NewCol] == 0) {
          q.offer(new int[] { NewRow, NewCol,
                             t + 1 });
          vis[NewRow][NewCol] = 1;
        }
      }
    }
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        if (vis[i][j] != 1 && matrix[i][j] == 0) {
          return -1;
        }
      }
    }
    return operations;
  }
 
  public static void main(String[] args)
  {
    int[][] matrix = { { 1, 0, 0, 0, 0 },
                      { 0, 0, 0, 0, 0 },
                      { 2, 2, 0, 0, 0 },
                      { 0, 0, 0, 0, 0 } };
    int Ans = minOperations(matrix);
    if (Ans == -1)
      System.out.println("-1");
    else
      System.out.println(
      "The Minimum operations to visit all cells: "
      + Ans);
  }
}


Python3




from queue import Queue
 
 
def minOperations(Matrix):
    n = len(Matrix)
    m = len(Matrix[0])
    q = Queue()
 
    # vis array
    vis = [[0 for j in range(m)] for i in range(n)]
    for i in range(n):
        for j in range(m):
            if Matrix[i][j] == 1:
                q.put(((i, j), 0))
                vis[i][j] = 1
            else:
                vis[i][j] = 0
 
    # for all four directions
    forRow = [-1, 0, 1, 0]
    forCol = [0, 1, 0, -1]
 
    operations = 0
 
    # Start iterating through the Queue
    while not q.empty():
        t = q.queue[0][1]
        Crow, Ccol = q.queue[0][0]
        operations = max(operations, t)
        q.get()
        for i in range(4):
            NewRow = Crow + forRow[i]
            NewCol = Ccol + forCol[i]
            if NewRow >= 0 and NewRow < n and NewCol >= 0 and NewCol < m and not vis[NewRow][NewCol] and Matrix[NewRow][NewCol] == 0:
                q.put(((NewRow, NewCol), t+1))
                vis[NewRow][NewCol] = 1
 
    for i in range(n):
        for j in range(m):
            if vis[i][j] != 1 and Matrix[i][j] == 0:
                return -1
    return operations
 
 
# Driver code
Matrix = [[1, 0, 0, 0, 0],
          [0, 0, 0, 0, 0],
          [2, 2, 0, 0, 0],
          [0, 0, 0, 0, 0]]
 
Ans = minOperations(Matrix)
if Ans == -1:
    print("-1")
else:
    print("The Minimum operations to visit all cells: ", Ans)


C#




// C# code for the above approach
using System;
using System.Collections.Generic;
 
public class GFG {
    static int MinOperations(List<List<int> > matrix)
    {
        int n = matrix.Count;
        int m = matrix[0].Count;
        Queue<Tuple<Tuple<int, int>, int> > q
            = new Queue<Tuple<Tuple<int, int>, int> >();
 
        // vis array
        int[, ] vis = new int[n, m];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (matrix[i][j] == 1) {
                    q.Enqueue(
                        new Tuple<Tuple<int, int>, int>(
                            new Tuple<int, int>(i, j), 0));
                    vis[i, j] = 1;
                }
                else {
                    vis[i, j] = 0;
                }
            }
        }
 
        // for all four directions
        int[] forRow = { -1, 0, +1, 0 };
        int[] forCol = { 0, +1, 0, -1 };
 
        int operations = 0;
 
        // Start iterating through the Queue
        while (q.Count > 0) {
            int t = q.Peek().Item2;
            int Crow = q.Peek().Item1.Item1;
            int Ccol = q.Peek().Item1.Item2;
            operations = Math.Max(operations, t);
            q.Dequeue();
            for (int i = 0; i < 4; i++) {
                int NewRow = Crow + forRow[i];
                int NewCol = Ccol + forCol[i];
                if (NewRow >= 0 && NewRow < n && NewCol >= 0
                    && NewCol < m
                    && vis[NewRow, NewCol] == 0
                    && matrix[NewRow][NewCol] == 0) {
                    q.Enqueue(
                        new Tuple<Tuple<int, int>, int>(
                            new Tuple<int, int>(NewRow,
                                                NewCol),
                            t + 1));
                    vis[NewRow, NewCol] = 1;
                }
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (vis[i, j] != 1 && matrix[i][j] == 0) {
                    return -1;
                }
            }
        }
        return operations;
    }
 
    static void Main()
    {
        List<List<int> > matrix = new List<List<int> >{
            new List<int>{ 1, 0, 0, 0, 0 },
            new List<int>{ 0, 0, 0, 0, 0 },
            new List<int>{ 2, 2, 0, 0, 0 },
            new List<int>{ 0, 0, 0, 0, 0 }
        };
        int ans = MinOperations(matrix);
        if (ans == -1)
            Console.WriteLine("-1");
        else
            Console.WriteLine(
                "The Minimum operations to visit all cells: "
                + ans);
    }
}
 
// This code is contributed by Susobhan Akhuli


Javascript




// Javascript code for the above approach
function minOperations(matrix) {
  const n = matrix.length;
  const m = matrix[0].length;
  const queue = [];
 
  // vis array
  const vis = [];
  for (let i = 0; i < n; i++) {
    vis.push([]);
    for (let j = 0; j < m; j++) {
      if (matrix[i][j] === 1) {
        queue.push([{ row: i, col: j }, 0]);
        vis[i][j] = 1;
      } else {
        vis[i][j] = 0;
      }
    }
  }
 
  // for all four directions
  const forRow = [-1, 0, 1, 0];
  const forCol = [0, 1, 0, -1];
 
  let operations = 0;
 
  // Start iterating through the queue
  while (queue.length > 0) {
    const t = queue[0][1];
    const { row: crow, col: ccol } = queue[0][0];
    operations = Math.max(operations, t);
    queue.shift();
    for (let i = 0; i < 4; i++) {
      const newRow = crow + forRow[i];
      const newCol = ccol + forCol[i];
      if (
        newRow >= 0 &&
        newRow < n &&
        newCol >= 0 &&
        newCol < m &&
        !vis[newRow][newCol] &&
        matrix[newRow][newCol] === 0
      ) {
        queue.push([{ row: newRow, col: newCol }, t + 1]);
        vis[newRow][newCol] = 1;
      }
    }
  }
  for (let i = 0; i < n; i++) {
    for (let j = 0; j < m; j++) {
      if (vis[i][j] !== 1 && matrix[i][j] === 0) {
        return -1;
      }
    }
  }
  return operations;
}
 
// Driver code
const matrix = [
  [1, 0, 0, 0, 0],
  [0, 0, 0, 0, 0],
  [2, 2, 0, 0, 0],
  [0, 0, 0, 0, 0],
];
const ans = minOperations(matrix);
if (ans === -1) {
  console.log("-1");
} else {
  console.log("The Minimum operations to visit all cells:", ans);
}
 
// This code is contributed by Susobhan Akhuli


Output

The Minimum operations to visit all cells:7




Time Complexity: O( R *C), Each element of the matrix can be inserted into the queue only once so the upper bound of iteration is O(R*C).
Auxiliary Space: O(R*C), To store the elements in a queue.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
28 Jul, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments