Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum flips to make mean of all k size sub-arrays less than...

Minimum flips to make mean of all k size sub-arrays less than 1

Given an array A of size N, having each element either 0 or 1 and an integer K. Find the minimum number of elements that need to be flipped, such that no sub-array of size greater than or equal to K has an arithmetic mean of 1.

Examples:

Input: N = 5, A = {1, 1, 1, 1, 1}, K = 5
Output: 1
Explanation: Initially, mean of only sub-array of size 5 is (1+1+1+1+1)/5 = 1. So,  flip the first element (i.e. make it 0).  The array now becomes {0, 1, 1, 1, 1}, whose mean is less than 1. So, we needed just 1 flip to satisfy the required condition.
Note that {1, 1, 1, 1, 0} also satisfies required condition. Other arrays are also possible.

Input: N = 4, A = {1, 1, 0, 1}, K = 2
Output: 1
Explanation: flip the first 1 (i.e. element at 0 index), to that resultant array becomes {0, 1, 0, 1} in which no sub-array of size 2 of more has a mean 1.
Note that {1, 0, 0, 1} is also a possible array satisfying required condition.

 

Approach: This problem can be easily solved by using the Greedy technique. 
The observation is that a binary array of size K has an arithmetic mean equal to 1 only if all the K elements in it are equal to 1. Also, if all of the sub-arrays of size K have meant less than 1, then all sub-arrays of size greater than K  would also have meant less than 1. So, the following approach can be used to solve the problem- 

  • Start traversing the given array.
  • maintain the current count of consecutive ones till the current index in a variable, say “count”.
  • If the current element is 1, we increment the count by 1, else we make it 0, as the consecutive 1s ending on ith index becomes 0.
  • If the count becomes equal to K, that means there are K consecutive 1s ending on the current index, so we increment the answer by 1 (that implies the current index would be made 0 )and again make the count variable 0.

Below is the implementation of the above approach:

C++




// C++ program to find Minimum flips to
// Make mean of all k size
// Sub-arrays less than 1
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate
// Minimum flips to  make
// Mean of all k size
// Subarrays less than 1
int minimumFlips(int N, int A[], int K)
{
    // Initializing answer by 0
    // That stores the number of flips
    int answer = 0;
 
    // Initializing count variable by 0
    // That stores the number of consecutive 1s
    int count = 0;
 
    // iterating through the array
    for (int i = 0; i < N; i++) {
        if (A[i] == 1) {
            // If current element is 1,
            // We increment count by 1
            count++;
 
            // if count of consecutive 1s
            // Reaches k, we increment the answer
            // as the mean of the subarray from
            // i-k to ith element becomes 1
            if (count == K) {
                answer++;
                count = 0;
            }
        }
 
        // else if current element is
        // 0, we make count 0
        else {
            count = 0;
        }
    }
 
    // returning the required answer
    return answer;
}
 
// Driver Code
int main()
{
    int N = 5, K = 5;
    int A[] = { 1, 1, 1, 1, 1 };
    int minimum_flips = minimumFlips(N, A, K);
    cout << minimum_flips;
}


Java




// Java program to find Minimum flips to
// Make mean of all k size
// Sub-arrays less than 1
import java.io.*;
 
class GFG {
 
  // Function to calculate
  // Minimum flips to  make
  // Mean of all k size
  // Subarrays less than 1
  static int minimumFlips(int N, int A[], int K)
  {
     
    // Initializing answer by 0
    // That stores the number of flips
    int answer = 0;
 
    // Initializing count variable by 0
    // That stores the number of consecutive 1s
    int count = 0;
 
    // iterating through the array
    for (int i = 0; i < N; i++)
    {
      if (A[i] == 1)
      {
         
        // If current element is 1,
        // We increment count by 1
        count++;
 
        // if count of consecutive 1s
        // Reaches k, we increment the answer
        // as the mean of the subarray from
        // i-k to ith element becomes 1
        if (count == K) {
          answer++;
          count = 0;
        }
      }
 
      // else if current element is
      // 0, we make count 0
      else {
        count = 0;
      }
    }
 
    // returning the required answer
    return answer;
  }
 
  // Driver Code
  public static void main (String[] args) {
    int N = 5, K = 5;
    int A[] = { 1, 1, 1, 1, 1 };
    int minimum_flips = minimumFlips(N, A, K);
    System.out.println( minimum_flips);
  }
}
 
// This code is contributed by hrithikgarg03188.


Python




# Python program to find Minimum flips to
# Make mean of all k size
# Sub-arrays less than 1
 
# Function to calculate
# Minimum flips to  make
# Mean of all k size
# Subarrays less than 1
def minimumFlips(N, A, K):
     
    # Initializing answer by 0
    # That stores the number of flips
    answer = 0
 
    # Initializing count variable by 0
    # That stores the number of consecutive 1s
    count = 0
 
    # iterating through the array
    for i in range(0, N):
        if (A[i] == 1):
             
            # If current element is 1,
            # We increment count by 1
            count += 1
 
            # if count of consecutive 1s
            # Reaches k, we increment the answer
            # as the mean of the subarray from
            # i-k to ith element becomes 1
            if (count == K):
                answer += 1
                count = 0
 
        # else if current element is
        # 0, we make count 0
        else:
            count = 0
 
    # returning the required answer
    return answer
 
# Driver Code
N = 5
K = 5
A = [ 1, 1, 1, 1, 1 ]
minimum_flips = minimumFlips(N, A, K)
print(minimum_flips)
 
# This code is contributed by Samim Hossain Mondal.


C#




// C# program to find Minimum flips to
// Make mean of all k size
// Sub-arrays less than 1
using System;
 
class GFG {
 
  // Function to calculate
  // Minimum flips to  make
  // Mean of all k size
  // Subarrays less than 1
  static int minimumFlips(int N, int[] A, int K)
  {
 
    // Initializing answer by 0
    // That stores the number of flips
    int answer = 0;
 
    // Initializing count variable by 0
    // That stores the number of consecutive 1s
    int count = 0;
 
    // iterating through the array
    for (int i = 0; i < N; i++) {
      if (A[i] == 1) {
 
        // If current element is 1,
        // We increment count by 1
        count++;
 
        // if count of consecutive 1s
        // Reaches k, we increment the answer
        // as the mean of the subarray from
        // i-k to ith element becomes 1
        if (count == K) {
          answer++;
          count = 0;
        }
      }
 
      // else if current element is
      // 0, we make count 0
      else {
        count = 0;
      }
    }
 
    // returning the required answer
    return answer;
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    int N = 5, K = 5;
    int[] A = { 1, 1, 1, 1, 1 };
    int minimum_flips = minimumFlips(N, A, K);
    Console.WriteLine(minimum_flips);
  }
}
 
// This code is contributed by ukasp.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to calculate
       // Minimum flips to  make
       // Mean of all k size
       // Subarrays less than 1
       function minimumFlips(N, A, K)
       {
        
           // Initializing answer by 0
           // That stores the number of flips
           let answer = 0;
 
           // Initializing count variable by 0
           // That stores the number of consecutive 1s
           let count = 0;
 
           // iterating through the array
           for (let i = 0; i < N; i++) {
               if (A[i] == 1) {
                   // If current element is 1,
                   // We increment count by 1
                   count++;
 
                   // if count of consecutive 1s
                   // Reaches k, we increment the answer
                   // as the mean of the subarray from
                   // i-k to ith element becomes 1
                   if (count == K) {
                       answer++;
                       count = 0;
                   }
               }
 
               // else if current element is
               // 0, we make count 0
               else {
                   count = 0;
               }
           }
 
           // returning the required answer
           return answer;
       }
 
       // Driver Code
       let N = 5, K = 5;
       let A = [1, 1, 1, 1, 1];
       let minimum_flips = minimumFlips(N, A, K);
       document.write(minimum_flips);
 
    // This code is contributed by Potta Lokesh
   </script>


 
 

Output

1






 

Time Complexity: O(N)
Auxiliary Space: O(1)

Another Approach:

  1. Define the function minimumFlips that takes in an integer N, an integer array A of size N, and an integer K as input parameters and returns an integer as the output.
  2. Initialize two variables answer and sum to 0.
  3. Traverse through the first K-1 elements of the array and add their values to sum.
  4. Traverse through the remaining elements of the array from K to N-1.
  5. Add the current element to sum.
  6. Check if the arithmetic mean of the K consecutive elements starting from the current element is greater than or equal to 1.
  7. If it is, increment answer by 1 and decrement sum by 1 (as we need to flip the current element to 0).
  8. Check if the index i-K+1 is greater than or equal to 0 (to ensure that we do not access out of bounds elements).
  9. If it is, subtract the value of the element at index i-K+1 from sum.
  10. Return the value of answer as the output.

C++




#include<bits/stdc++.h>
using namespace std;
 
int minimumFlips(int N, int A[], int K) {
    int answer = 0, sum = 0;
    for(int i = 0; i < K - 1; i++) {
        sum += A[i];
    }
    for(int i = K - 1; i < N; i++) {
        sum += A[i];
        if((double)sum/K >= 1) {
            answer++;
            sum--;
        }
        if(i - K + 1 >= 0) {
            sum -= A[i - K + 1];
        }
    }
    return answer;
}
 
int main() {
    int N = 5, K = 5;
    int A[] = { 1, 1, 1, 1, 1 };
    int minimum_flips = minimumFlips(N, A, K);
    cout << minimum_flips << endl;
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
    public static int minimumFlips(int N, int A[], int K) {
        int answer = 0, sum = 0;
        for (int i = 0; i < K - 1; i++) {
            sum += A[i];
        }
        for (int i = K - 1; i < N; i++) {
            sum += A[i];
            if ((double) sum / K >= 1) {
                answer++;
                sum--;
            }
            if (i - K + 1 >= 0) {
                sum -= A[i - K + 1];
            }
        }
        return answer;
    }
 
    public static void main(String[] args) {
        int N = 5, K = 5;
        int[] A = {1, 1, 1, 1, 1};
        int minimum_flips = minimumFlips(N, A, K);
        System.out.println(minimum_flips);
    }
}


Python




def minimumFlips(N, A, K):
    answer = 0
    sum_val = 0
    for i in range(K - 1):
        sum_val += A[i]
    for i in range(K - 1, N):
        sum_val += A[i]
        if sum_val / K >= 1:
            answer += 1
            sum_val -= 1
        if i - K + 1 >= 0:
            sum_val -= A[i - K + 1]
    return answer
 
 
N = 5
K = 5
A = [1, 1, 1, 1, 1]
minimum_flips = minimumFlips(N, A, K)
print(minimum_flips)


C#




using System;
 
public class MainClass
{
    public static int MinimumFlips(int N, int[] A, int K)
    {
        int answer = 0;
        int sum = 0;
 
        // Calculate the initial sum of the first K-1 elements
        for (int i = 0; i < K - 1; i++)
        {
            sum += A[i];
        }
 
        // Iterate through the array
        for (int i = K - 1; i < N; i++)
        {
            sum += A[i];
 
            // Check if the average of the current K elements is greater than or equal to 1
            if ((double)sum / K >= 1)
            {
                answer++;
                sum--;
            }
 
            // Remove the contribution of the first element in the sliding window
            if (i - K + 1 >= 0)
            {
                sum -= A[i - K + 1];
            }
        }
 
        return answer;
    }
 
    public static void Main(string[] args)
    {
        int N = 5;
        int K = 5;
        int[] A = { 1, 1, 1, 1, 1 };
        int minimumFlips = MinimumFlips(N, A, K);
        Console.WriteLine(minimumFlips);
    }
}


Javascript




function minimumFlips(N, A, K) {
    let answer = 0, sum = 0;
    for(let i = 0; i < K - 1; i++) {
        sum += A[i];
    }
    for(let i = K - 1; i < N; i++) {
        sum += A[i];
        if(sum/K >= 1) {
            answer++;
            sum--;
        }
        if(i - K + 1 >= 0) {
            sum -= A[i - K + 1];
        }
    }
    return answer;
}
 
let N = 5, K = 5;
let A = [ 1, 1, 1, 1, 1 ];
let minimum_flips = minimumFlips(N, A, K);
console.log(minimum_flips);


Output

1






Time complexity: O(n)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
21 Sep, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments