Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimize sum of Array formed using given relation between adjacent elements

Minimize sum of Array formed using given relation between adjacent elements

Given a binary string S of length N, consisting of 0’s and 1’s, the task is to find the minimum sum of the array of non-negative integers of length N+1 created by following the below conditions:

  1. If the ith number in the given binary string is 0, then the (i + 1)th number in the array must be less than the ith number.
  2. If the ith number in the given binary string is 1, then the (i + 1)th number in the array must be greater than the ith number.

Examples:

Input: N = 3, S = “100”
Output: 3
Explanation:  We can create the array [0, 2, 1, 0]. 
So total sum will be 0 + 2 + 1 + 0  = 3. 
Hence, resultant array follows the conditions, and ‘3’ is the minimum value we can achieve.

Input: N = 3, S = “101”
Output: 2
Explanation: We can create the array [0, 1, 0, 1]. 
So total sum will be 0 + 1 + 0 + 1 = 2. 
Hence, resultant array follows the conditions, and ‘2’ is the minimum value we can achieve.

 

Approach: This problem can be solved by using greedy approach based on the following observation:

  • Consider we have K consecutive 1, in this case, last value will be at least K, as array would look something like this [0, 1, 2, …, K – 1, K], this would give us a minimum sum.
  • Same thing if we have K consecutive 0, in this case, array will look something like this  [K, K – 1, …, 2, 1, 0], hence our first value will be at least K.
  • Thus the ith element of the answer array will be the maximum among consecutive 1’s to its left and consecutive 0’s to its right. 

If we take a value greater than the maximum value, we will increase our sum, and hence the sum will not be minimum. If we take any less value than the maximum value, then one of the values in the array will become less than 0, which is a violation of the condition.

Follow the below steps to solve this problem:

  • Construct two arrays of length N + 1 (say arr1[] and arr2[] )and fill all the values as ‘0’.
  • Traverse from i = 0 to N – 1.
    • If S[i] value is 1 set arr1[i+1] = arr1[i]+1.
  • Traverse from i = N – 1 to 0.
    • If S[i] value is 0 set arr2[i] = arr2[i+1]+1.
  • Traverse in both the arrays from i = 0 to N:
    • Add the maximum of arr1[i] and arr2[i] to the answer.
  • Return the answer.

Below is the implementation of the above approach :

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
long long minimumSum(string& s, int n)
{
    vector<int> arr1(n + 1, 0), arr2(n + 1, 0);
 
    // Finding maximum consecutive 1
    // to the left, for each index
    for (int i = 0; i < n; ++i) {
        if (s[i] == '1') {
            arr1[i + 1] = arr1[i] + 1;
        }
    }
 
    // Finding maximum consecutive
    // 0 to the right, for each index.
    for (int i = n - 1; i >= 0; --i) {
        if (s[i] == '0') {
            arr2[i] = arr2[i + 1] + 1;
        }
    }
 
    long long ans = 0;
 
    // Loop to find the sum
    for (int i = 0; i < n + 1; ++i) {
        ans += max(arr1[i], arr2[i]);
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int N = 3;
    string S = "101";
 
    // fzunction call
    cout << minimumSum(S, N);
    return 0;
}


Java




// Java code to implement the approach
import java.util.Arrays;
 
class GFG
{
 
  // Function to calculate the sum
  public static long minimumSum(String s, int n)
  {
    int arr1[] = new int[n + 1];
    int arr2[] = new int[n + 1];
    Arrays.fill(arr1, 0);
    Arrays.fill(arr2, 0);
 
    // Finding maximum consecutive 1
    // to the left, for each index
    for (int i = 0; i < n; ++i) {
      if (s.charAt(i) == '1') {
        arr1[i + 1] = arr1[i] + 1;
      }
    }
 
    // Finding maximum consecutive
    // 0 to the right, for each index.
    for (int i = n - 1; i >= 0; --i) {
      if (s.charAt(i) == '0') {
        arr2[i] = arr2[i + 1] + 1;
      }
    }
 
    long ans = 0;
 
    // Loop to find the sum
    for (int i = 0; i < n + 1; ++i) {
      ans += Math.max(arr1[i], arr2[i]);
    }
 
    return ans;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N = 3;
    String S = "101";
 
    // function call
    System.out.println(minimumSum(S, N));
  }
}
 
// This code is contributed by phasing17


Python3




# Python3 code for the above approach
 
# Function to calculate the sum
def minimumSum(s, n):
    arr1 = [0] * (n + 1)
    arr2 = [0] * (n + 1)
 
    # Finding maximum consecutive 1
    # to the left, for each index
    for i in range(n):
        if s[i] == "1":
            arr1[i + 1] = arr1[i] + 1
 
    # Finding maximum consecutive
    # 0 to the right, for each index
    for i in range(n - 1, -1, -1):
        if s[i] == "0":
            arr2[i] = arr2[i + 1] + 1
    ans = 0
 
    # Loop to find the sum
    for i in range(n + 1):
        ans += max(arr1[i], arr2[i])
    return ans
 
# Driver code
N = 3
S = "101"
print(minimumSum(S, N))
 
# This code is contributed by phasing17


C#




// C# program to implement
// the above approach
using System;
class GFG
{
 
  // Function to calculate the sum
  public static long minimumSum(string s, int n)
  {
    int[] arr1 = new int[n + 1];
    int[] arr2 = new int[n + 1];
 
    for (int i = 0; i < n+1; i++) {
      arr1[i] = 0;
    }
    for (int i = 0; i < n+1; i++) {
      arr2[i] = 0;
    }
 
    // Finding maximum consecutive 1
    // to the left, for each index
    for (int i = 0; i < n; ++i) {
      if (s[i] == '1') {
        arr1[i + 1] = arr1[i] + 1;
      }
    }
 
    // Finding maximum consecutive
    // 0 to the right, for each index.
    for (int i = n - 1; i >= 0; --i) {
      if (s[i] == '0') {
        arr2[i] = arr2[i + 1] + 1;
      }
    }
 
    long ans = 0;
 
    // Loop to find the sum
    for (int i = 0; i < n + 1; ++i) {
      ans += Math.Max(arr1[i], arr2[i]);
    }
 
    return ans;
  }
 
  // Driver Code
  public static void Main()
  {
    int N = 3;
    string S = "101";
 
    // function call
    Console.Write(minimumSum(S, N));
  }
}
 
// This code is contributed by code_hunt.


Javascript




<script>
       // JavaScript code for the above approach
 
 
       // Function to calculate the sum
       function minimumSum(s, n) {
           let arr1 = new Array(n + 1).fill(0), arr2 = new Array(n + 1).fill(0);
 
           // Finding maximum consecutive 1
           // to the left, for each index
           for (let i = 0; i < n; ++i) {
               if (s[i] == '1') {
                   arr1[i + 1] = arr1[i] + 1;
               }
           }
 
           // Finding maximum consecutive
           // 0 to the right, for each index.
           for (let i = n - 1; i >= 0; --i) {
               if (s[i] == '0') {
                   arr2[i] = arr2[i + 1] + 1;
               }
           }
 
           let ans = 0;
 
           // Loop to find the sum
           for (let i = 0; i < n + 1; ++i) {
               ans += Math.max(arr1[i], arr2[i]);
           }
 
           return ans;
       }
 
       // Driver Code
 
       let N = 3;
       let S = "101";
 
       // fzunction call
       document.write(minimumSum(S, N));
 
 
   // This code is contributed by Potta Lokesh
   </script>


Output

2

Time Complexity: O(N)
Auxiliary Space  O(N)

Another Approach:

  1. Initialize an array of length N+1 (say arr) with all elements set to 0.
  2. Traverse from i = 0 to N – 1.
    (a) If S[i] value is 1, set arr[i+1] = arr[i]+1.
    (b) If S[i] value is 0, set arr[i+1] = 0.
  3. Traverse from i = N – 1 to 0.
    (a) If S[i] value is 0, set arr[i] = max(arr[i], arr[i+1]+1).
  4. Traverse in the array arr from i = 0 to N:
    (a) Add the arr[i] value to the answer.
  5. Return the answer.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
long long minimumSum(string& s, int n)
{
    vector<int> arr(n + 1, 0);
  
    // Finding maximum consecutive 1
    // to the left, for each index
    for (int i = 0; i < n; ++i) {
        if (s[i] == '1') {
            arr[i + 1] = arr[i] + 1;
        }
    }
  
    // Finding maximum consecutive
    // 0 to the right, for each index.
    for (int i = n - 1; i >= 0; --i) {
        if (s[i] == '0') {
            arr[i] = max(arr[i], arr[i + 1] + 1);
        }
    }
  
    long long ans = 0;
  
    // Loop to find the sum
    for (int i = 0; i < n + 1; ++i) {
        ans += arr[i];
    }
  
    return ans;
}
// Driver Code
int main()
{
    int N = 3;
    string S = "101";
 
    // fzunction call
    cout << minimumSum(S, N);
    return 0;
}


Java




import java.util.*;
 
public class Main {
  // Function to calculate the sum
  static long minimumSum(String s, int n) {
    List<Integer> arr = new ArrayList<>(Collections.nCopies(n + 1, 0));
 
    // Finding maximum consecutive 1
    // to the left, for each index
    for (int i = 0; i < n; ++i) {
      if (s.charAt(i) == '1') {
        arr.set(i + 1, arr.get(i) + 1);
      }
    }
 
    // Finding maximum consecutive
    // 0 to the right, for each index.
    for (int i = n - 1; i >= 0; --i) {
      if (s.charAt(i) == '0') {
        arr.set(i, Math.max(arr.get(i), arr.get(i + 1) + 1));
      }
    }
 
    long ans = 0;
 
    // Loop to find the sum
    for (int i = 0; i < n + 1; ++i) {
      ans += arr.get(i);
    }
 
    return ans;
  }
 
  // Driver Code
  public static void main(String[] args) {
    int N = 3;
    String S = "101";
 
    // function call
    System.out.println(minimumSum(S, N));
  }
}
// This code is contributed by Akash Jha


Python3




# Python3 code to implement the approach
 
# Function to calculate the sum
def minimumSum(s, n):
    arr = [0] * (n + 1)
 
    # Finding maximum consecutive 1
    # to the left, for each index
    for i in range(n):
        if s[i] == '1':
            arr[i + 1] = arr[i] + 1
 
    # Finding maximum consecutive
    # 0 to the right, for each index.
    for i in range(n - 1, -1, -1):
        if s[i] == '0':
            arr[i] = max(arr[i], arr[i + 1] + 1)
 
    ans = 0
 
    # Loop to find the sum
    for i in range(n + 1):
        ans += arr[i]
 
    return ans
 
# Driver Code
N = 3
S = "101"
 
# Function call
print(minimumSum(S, N))


C#




// C# code to implement the approach
 
using System;
using System.Collections.Generic;
using System.Linq;
 
public class GFG
{
 
  // Function to calculate the sum
  public static long MinimumSum(string s, int n)
  {
    List<int> arr = new List<int>(n + 1);
    for (int i = 0; i < n + 1; i++) {
      arr.Add(0);
    }
 
    // Finding maximum consecutive 1
    // to the left, for each index
    for (int i = 0; i < n; i++) {
      if (s[i] == '1') {
        arr[i + 1] = arr[i] + 1;
      }
    }
 
    // Finding maximum consecutive
    // 0 to the right, for each index.
    for (int i = n - 1; i >= 0; i--) {
      if (s[i] == '0') {
        arr[i] = Math.Max(arr[i], arr[i + 1] + 1);
      }
    }
 
    long ans = 0;
 
    // Loop to find the sum
    for (int i = 0; i < n + 1; i++) {
      ans += arr[i];
    }
 
    return ans;
  }
 
  // Driver Code
  public static void Main()
  {
    int N = 3;
    string S = "101";
 
    // Function call
    Console.Write(MinimumSum(S, N));
  }
}
 
// This code is contributed by Akash Jha


Javascript




// Function to calculate the sum
function minimumSum(s, n) {
  let arr = new Array(n + 1).fill(0);
 
  // Finding maximum consecutive 1
  // to the left, for each index
  for (let i = 0; i < n; ++i) {
    if (s[i] == '1') {
      arr[i + 1] = arr[i] + 1;
    }
  }
 
  // Finding maximum consecutive
  // 0 to the right, for each index.
  for (let i = n - 1; i >= 0; --i) {
    if (s[i] == '0') {
      arr[i] = Math.max(arr[i], arr[i + 1] + 1);
    }
  }
 
  let ans = 0;
 
  // Loop to find the sum
  for (let i = 0; i < n + 1; ++i) {
    ans += arr[i];
  }
 
  return ans;
}
 
// Driver Code
let N = 3;
let S = "101";
 
// Function call
console.log(minimumSum(S, N));


Output

2

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
28 Apr, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments