Friday, January 10, 2025
Google search engine
HomeData Modelling & AISum of elements in an array whose difference with the mean of...

Sum of elements in an array whose difference with the mean of another array is less than k

Given two unsorted arrays arr1[] and arr2[]. Find the sum of elements from arr1[] whose difference with the mean of arr2[] is < k.
Examples: 
 

Input: arr1[] = {1, 2, 3, 4, 7, 9}, arr2[] = {0, 1, 2, 1, 1, 4}, k = 2 
Output:
Mean of 2nd array is 1.5. 
Hence, 1, 2, 3 are the only elements 
whose difference with mean is less than 2
Input: arr1[] = {5, 10, 2, 6, 1, 8, 6, 12}, arr2[] = {6, 5, 11, 4, 2, 3, 7}, k = 4 
Output:
 

 

Approach: Calculate the mean of the second array and then traverse the first array and calculate the sum of those elements whose absolute difference with mean is < k.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function for finding sum of elements
// whose diff with mean is not more than k
int findSumofEle(int arr1[], int m,
                 int arr2[], int n, int k)
{
    float arraySum = 0;
 
    // Find the mean of second array
    for (int i = 0; i < n; i++)
        arraySum += arr2[i];
    float mean = arraySum / n;
 
    // Find sum of elements from array1
    // whose difference with mean in not more than k
    int sumOfElements = 0;
    float difference;
 
    for (int i = 0; i < m; i++) {
        difference = arr1[i] - mean;
        if ((difference < 0) && (k > (-1) * difference)) {
            sumOfElements += arr1[i];
        }
        if ((difference >= 0) && (k > difference)) {
            sumOfElements += arr1[i];
        }
    }
 
    // Return result
    return sumOfElements;
}
 
// Driver code
int main()
{
    int arr1[] = { 1, 2, 3, 4, 7, 9 };
    int arr2[] = { 0, 1, 2, 1, 1, 4 };
    int k = 2;
    int m, n;
 
    m = sizeof(arr1) / sizeof(arr1[0]);
    n = sizeof(arr2) / sizeof(arr2[0]);
 
    cout << findSumofEle(arr1, m, arr2, n, k);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
// Function for finding sum of elements
// whose diff with mean is not more than k
static int findSumofEle(int []arr1, int m,
                int []arr2, int n, int k)
{
    float arraySum = 0;
 
    // Find the mean of second array
    for (int i = 0; i < n; i++)
        arraySum += arr2[i];
    float mean = arraySum / n;
 
    // Find sum of elements from array1
    // whose difference with mean in not more than k
    int sumOfElements = 0;
    float difference = 0;
 
    for (int i = 0; i < m; i++)
    {
        difference = arr1[i] - mean;
        if ((difference < 0) && (k > (-1) * difference))
        {
            sumOfElements += arr1[i];
        }
        if ((difference >= 0) && (k > difference))
        {
            sumOfElements += arr1[i];
        }
    }
 
    // Return result
    return sumOfElements;
}
 
// Driver code
public static void main (String[] args)
{
    int []arr1 = { 1, 2, 3, 4, 7, 9 };
    int []arr2 = { 0, 1, 2, 1, 1, 4 };
    int k = 2;
 
    int m = arr1.length;
    int n = arr2.length;
 
    System.out.println(findSumofEle(arr1, m, arr2, n, k));
}
}
 
// This code is contributed by mits


Python3




# Python3 implementation of the approach
 
# Function for finding sum of elements
# whose diff with mean is not more than k
def findSumofEle(arr1, m, arr2, n, k):
    arraySum = 0
 
    # Find the mean of second array
    for i in range(n):
        arraySum += arr2[i]
    mean = arraySum / n
 
    # Find sum of elements from array1
    # whose difference with mean
    # is not more than k
    sumOfElements = 0
    difference = 0
 
    for i in range(m):
 
        difference = arr1[i] - mean
 
        if ((difference < 0) and (k > (-1) * difference)):
            sumOfElements += arr1[i]
 
        if ((difference >= 0) and (k > difference)):
            sumOfElements += arr1[i]
 
    # Return result
    return sumOfElements
 
# Driver code
arr1 = [ 1, 2, 3, 4, 7, 9]
arr2 = [ 0, 1, 2, 1, 1, 4]
k = 2
 
m = len(arr1)
n = len(arr2)
 
print(findSumofEle(arr1, m, arr2, n, k))
 
# This code is contributed by mohit kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function for finding sum of elements
// whose diff with mean is not more than k
static int findSumofEle(int []arr1, int m,
                int []arr2, int n, int k)
{
    float arraySum = 0;
 
    // Find the mean of second array
    for (int i = 0; i < n; i++)
        arraySum += arr2[i];
    float mean = arraySum / n;
 
    // Find sum of elements from array1
    // whose difference with mean in not more than k
    int sumOfElements = 0;
    float difference = 0;
 
    for (int i = 0; i < m; i++)
    {
        difference = arr1[i] - mean;
        if ((difference < 0) && (k > (-1) * difference))
        {
            sumOfElements += arr1[i];
        }
        if ((difference >= 0) && (k > difference))
        {
            sumOfElements += arr1[i];
        }
    }
 
    // Return result
    return sumOfElements;
}
 
// Driver code
static void Main()
{
    int []arr1 = { 1, 2, 3, 4, 7, 9 };
    int []arr2 = { 0, 1, 2, 1, 1, 4 };
    int k = 2;
 
    int m = arr1.Length;
    int n = arr2.Length;
 
    Console.WriteLine(findSumofEle(arr1, m, arr2, n, k));
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP implementation of the approach
 
// Function for finding sum of elements
// whose diff with mean is not more than k
function findSumofEle($arr1, $m, $arr2, $n, $k)
{
    $arraySum = 0;
 
    // Find the mean of second array
    for ($i = 0; $i < $n; $i++)
        $arraySum += $arr2[$i];
         
    $mean = $arraySum / $n;
 
    // Find sum of elements from array1
    // whose difference with mean
    // is not more than k
    $sumOfElements = 0;
 
    for ($i = 0; $i < $m; $i++)
    {
        $difference = $arr1[$i] - $mean;
        if (($difference < 0) &&
            ($k > (-1) * $difference))
        {
            $sumOfElements += $arr1[$i];
        }
        if (($difference >= 0) &&
            ($k > $difference))
        {
            $sumOfElements += $arr1[$i];
        }
    }
 
    // Return result
    return $sumOfElements;
}
 
// Driver code
$arr1 = array( 1, 2, 3, 4, 7, 9 );
$arr2 = array( 0, 1, 2, 1, 1, 4 );
$k = 2;
 
$m = count($arr1);
$n = count($arr2);
 
print(findSumofEle($arr1, $m,
                   $arr2, $n, $k));
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function for finding sum of elements
// whose diff with mean is not more than k
function findSumofEle(arr1, m, arr2, n, k)
{
    var arraySum = 0;
 
    // Find the mean of second array
    for (var i = 0; i < n; i++)
        arraySum += arr2[i];
    var mean = (arraySum / n);
 
    // Find sum of elements from array1
    // whose difference with mean in not more than k
    var sumOfElements = 0;
    var difference;
 
    for (var i = 0; i < m; i++) {
        difference = arr1[i] - mean;
        if ((difference < 0) && (k > (-1) * difference)) {
            sumOfElements += arr1[i];
        }
        if ((difference >= 0) && (k > difference)) {
            sumOfElements += arr1[i];
        }
    }
 
    // Return result
    return sumOfElements;
}
 
// Driver code
var arr1 = [ 1, 2, 3, 4, 7, 9 ];
var arr2 = [ 0, 1, 2, 1, 1, 4 ];
var k = 2;
var m, n;
m = arr1.length;
n = arr2.length;
document.write( findSumofEle(arr1, m, arr2, n, k));
 
</script>


Output: 

6

 

Time Complexity: O(n + m)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
09 Jun, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments