Given an array A[] of N integers, the task is to generate an array B[] such that B[i] contains the count of indices j in A[] such that j < i and A[j] % A[i] = 0
Examples:
Input: arr[] = {3, 5, 1}
Output: 0 0 2
Explanation:
3 and 5 do not divide any element on
their left but 1 divides 3 and 5.
Input: arr[] = {8, 1, 28, 4, 2, 6, 7}
Output: 0 1 0 2 3 0 1
Naive Approach: This approach is already discussed here. But the complexity of this approach is O(N2).
Efficient Approach:
- We can say that if number A divides a number B then A is a factor of B. So, we need to find the number of previous elements whose factor is the current element.
- We will maintain a count array that contains the count of the factor of each element.
- Now, Iterate over the array, and for each element
- Make the answer of the current element equal to count [ arr[i] ] and
- Increment the frequency of each factor of arr[i] in the count array.
- Make the answer of the current element equal to count [ arr[i] ] and
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Utility function to print the // elements of the array void printArr( int arr[], int n) { for ( int i = 0; i < n; i++) cout << arr[i] << " " ; } // Function to increment the count // for each factor of given val void IncrementFactors( int count[], int val) { for ( int i = 1; i * i <= val; i++) { if (val % i == 0) { if (i == val / i) { count[i]++; } else { count[i]++; count[val / i]++; } } } } // Function to generate and print // the required array void generateArr( int A[], int n) { int B[n]; // Find max element of array int maxi = *max_element(A, A + n); // Create count array of maxi size int count[maxi + 1] = { 0 }; // For every element of the array for ( int i = 0; i < n; i++) { // Count[ A[i] ] denotes how many // previous elements are there whose // factor is the current element. B[i] = count[A[i]]; // Increment in count array for // factors of A[i] IncrementFactors(count, A[i]); } // Print the generated array printArr(B, n); } // Driver code int main() { int arr[] = { 8, 1, 28, 4, 2, 6, 7 }; int n = sizeof (arr) / sizeof (arr[0]); generateArr(arr, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG{ // Utility function to print the // elements of the array static void printArr( int arr[], int n) { for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); } // Function to increment the count // for each factor of given val static void IncrementFactors( int count[], int val) { for ( int i = 1 ; i * i <= val; i++) { if (val % i == 0 ) { if (i == val / i) { count[i]++; } else { count[i]++; count[val / i]++; } } } } // Function to generate and print // the required array static void generateArr( int A[], int n) { int []B = new int [n]; // Find max element of array int maxi = Arrays.stream(A).max().getAsInt(); // Create count array of maxi size int count[] = new int [maxi + 1 ]; // For every element of the array for ( int i = 0 ; i < n; i++) { // Count[ A[i] ] denotes how many // previous elements are there whose // factor is the current element. B[i] = count[A[i]]; // Increment in count array for // factors of A[i] IncrementFactors(count, A[i]); } // Print the generated array printArr(B, n); } // Driver code public static void main(String[] args) { int arr[] = { 8 , 1 , 28 , 4 , 2 , 6 , 7 }; int n = arr.length; generateArr(arr, n); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 implementation of the approach # Utility function to print # elements of the array def printArr(arr, n): for i in range (n): print (arr[i], end = " " ) # Function to increment the count # for each factor of given val def IncrementFactors(count, val): i = 1 while (i * i < = val): if (val % i = = 0 ): if (i = = val / / i): count[i] + = 1 else : count[i] + = 1 count[val / / i] + = 1 i + = 1 # Function to generate and print # the required array def generateArr(A, n): B = [ 0 ] * n # Find max element of arr maxi = max (A) # Create count array of maxi size count = [ 0 ] * (maxi + 1 ) # For every element of the array for i in range (n): # Count[ A[i] ] denotes how many # previous elements are there whose # factor is the current element. B[i] = count[A[i]] # Increment in count array for # factors of A[i] IncrementFactors(count, A[i]) # Print the generated array printArr(B, n) # Driver code arr = [ 8 , 1 , 28 , 4 , 2 , 6 , 7 ] n = len (arr) generateArr(arr, n) # This code is contributed by code_hunt |
C#
// C# implementation of the approach using System; using System.Linq; class GFG{ // Utility function to print the // elements of the array static void printArr( int []arr, int n) { for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } // Function to increment the count // for each factor of given val static void IncrementFactors( int []count, int val) { for ( int i = 1; i * i <= val; i++) { if (val % i == 0) { if (i == val / i) { count[i]++; } else { count[i]++; count[val / i]++; } } } } // Function to generate and print // the required array static void generateArr( int []A, int n) { int []B = new int [n]; // Find max element of array int maxi = A.Max(); // Create count array of maxi size int []count = new int [maxi + 1]; // For every element of the array for ( int i = 0; i < n; i++) { // Count[ A[i] ] denotes how many // previous elements are there whose // factor is the current element. B[i] = count[A[i]]; // Increment in count array for // factors of A[i] IncrementFactors(count, A[i]); } // Print the generated array printArr(B, n); } // Driver code public static void Main(String[] args) { int []arr = { 8, 1, 28, 4, 2, 6, 7 }; int n = arr.Length; generateArr(arr, n); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // Javascript implementation of the approach // Utility function to print the // elements of the array function printArr(arr, n) { for (let i = 0; i < n; i++) document.write(arr[i] + " " ); } // Function to increment the count // for each factor of given val function IncrementFactors(count, val) { for (let i = 1; i * i <= val; i++) { if (val % i == 0) { if (i == parseInt(val / i)) { count[i]++; } else { count[i]++; count[parseInt(val / i)]++; } } } } // Function to generate and print // the required array function generateArr(A, n) { let B = new Array(n); // Find max element of array let maxi = Math.max(...A); // Create count array of maxi size let count = new Array(maxi + 1).fill(0); // For every element of the array for (let i = 0; i < n; i++) { // Count[ A[i] ] denotes how many // previous elements are there whose // factor is the current element. B[i] = count[A[i]]; // Increment in count array for // factors of A[i] IncrementFactors(count, A[i]); } // Print the generated array printArr(B, n); } // Driver code let arr = [ 8, 1, 28, 4, 2, 6, 7 ]; let n = arr.length; generateArr(arr, n); </script> |
0 1 0 2 3 0 1
Time Complexity: O(N * sqrt(MaxElement))
Auxiliary Space: O(N), since there is an extra array involved thus it takes O(N) extra space , where N is the length of the array
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!