Friday, January 31, 2025
Google search engine
HomeData Modelling & AIPath traversed using exactly M coins in K jumps

Path traversed using exactly M coins in K jumps

Given three integers N, K and M representing the Number of boxes (aligned horizontally from 1 to N), total numbers of allowed jumps and total available coins respectively, the task is to print the path that can be traversed within [1, N] by using exactly M coins in exactly K jumps. If a jump is made from position X to position Y then abs(X – Y) coins are used. If it is not possible to use M coins in K jumps, then print -1.
Examples: 
 

Input : N = 5, K = 4, M = 12 
Output : 5 1 4 5
Explanation : 
First jump: Box 1 -> Box 5. Hence, |1-5| = 4 coins used. 
Second Jump: Box 5 -> Box 1 Hence, |5-1| = 4 coins used. 
Third Jump: Box 1 -> Box 4 using 3 coins. 
Fourth Jump: Box 4 -> Box 5 using 1 coin. 
Hence, exactly 12 coins used in 4 jumps.
Input : N = 4, K = 3, M = 10 
Output : -1 
 

Approach: 
 

We can observe that the answer will be -1 for the following two cases: 
 

  • K > N-1 or
     
  • K * (N-1) < M.

The problem can be solved using Greedy Approach following the steps given below: 
Repeat the below operation until K become zero. 
 

  1. Find the minimum of N-1 and M – K – 1.
  2. Based on the above minimum value, move towards the left or right based on the availability reduce K.
  3. Repeat the above steps until K becomes 0.

Below is implementation of the above approach:
 

C++




// C++ program to print
// the path using exactly
// K jumps and M coins
#include <bits/stdc++.h>
using namespace std;
 
// Function that print the path
// using exactly K jumps and M coins
void print_path(int N, int jump, int coin)
{
    // If no path exists
    if (jump > coin
        || jump * (N - 1) < coin) {
        cout << "-1" << endl;
    }
    else {
        int pos = 1;
        while (jump > 0) {
 
            // It decides which
            // box to be jump
            int tmp = min(N - 1,
                          coin - (jump - 1));
 
            // It decides whether
            // to jump on left side or
            // to jump on right side
            if (pos + tmp <= N) {
                pos += tmp;
            }
            else {
                pos -= tmp;
            }
 
            // Print the path
            cout << pos << " ";
 
            coin -= tmp;
            jump -= 1;
        }
    }
}
 
// Driver Code
int main()
{
    int N = 5, K = 4, M = 12;
 
    // Function Call
    print_path(N, K, M);
    return 0;
}


Java




// Java program to print the path
// using exactly K jumps and M coins
import java.io.*;
 
class GFG{
 
// Function that print the path
// using exactly K jumps and M coins
static void print_path(int N, int jump,
                              int coin)
{
    // If no path exists
    if (jump > coin || jump * (N - 1) < coin)
    {
        System.out.println("-1");
    }
    else
    {
        int pos = 1;
        while (jump > 0)
        {
     
            // It decides which
            // box to be jump
            int tmp = Math.min(N - 1,
                               coin - (jump - 1));
     
            // It decides whether
            // to jump on left side or
            // to jump on right side
            if (pos + tmp <= N)
            {
                pos += tmp;
            }
            else
            {
                pos -= tmp;
            }
     
            // Print the path
            System.out.print(pos + " ");;
     
            coin -= tmp;
            jump -= 1;
        }
    }
}
     
// Driver Code
public static void main (String[] args)
{
    int N = 5, K = 4, M = 12;
     
    // Function Call
    print_path(N, K, M);
}
}
 
// This code is contributed by shubhamsingh10


Python3




# Python3 program to print the path 
# using exactly K jumps and M coins
 
# Function that pr the path
# using exactly K jumps and M coins
def print_path(N, jump, coin):
 
    # If no path exists
    if (jump > coin or
        jump * (N - 1) < coin):
        print("-1")
     
    else:
        pos = 1;
        while (jump > 0):
 
            # It decides which
            # box to be jump
            tmp = min(N - 1,
                      coin - (jump - 1));
 
            # It decides whether
            # to jump on left side or
            # to jump on right side
            if (pos + tmp <= N):
                pos += tmp;
            else:
                pos -= tmp;
             
            # Print the path
            print(pos, end = " ")
 
            coin -= tmp;
            jump -= 1;
         
# Driver code
N = 5
K = 4
M = 12
 
# Function call
print_path(N, K, M);
     
# This code is contributed by grand_master


C#




// C# program to print the path
// using exactly K jumps and M coins
using System;
 
class GFG{
 
// Function that print the path
// using exactly K jumps and M coins
static void print_path(int N, int jump,
                              int coin)
{
     
    // If no path exists
    if (jump > coin || jump * (N - 1) < coin)
    {
        Console.WriteLine("-1");
    }
     
    else
    {
        int pos = 1;
        while (jump > 0)
        {
             
            // It decides which
            // box to be jump
            int tmp = Math.Min(N - 1,
                            coin - (jump - 1));
     
            // It decides whether
            // to jump on left side or
            // to jump on right side
            if (pos + tmp <= N)
            {
                pos += tmp;
            }
            else
            {
                pos -= tmp;
            }
     
            // Print the path
            Console.Write(pos + " ");
     
            coin -= tmp;
            jump -= 1;
        }
    }
}
     
// Driver Code
public static void Main(String[] args)
{
    int N = 5, K = 4, M = 12;
     
    // Function Call
    print_path(N, K, M);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program to print the path
// using exactly K jumps and M coins
 
// Function that print the path
// using exactly K jumps and M coins
function print_path(N, jump, coin)
{
    // If no path exists
    if (jump > coin || jump * (N - 1) < coin)
    {
        document.write("-1");
    }
    else
    {
        let pos = 1;
        while (jump > 0)
        {
       
            // It decides which
            // box to be jump
            let tmp = Math.min(N - 1,
                               coin - (jump - 1));
       
            // It decides whether
            // to jump on left side or
            // to jump on right side
            if (pos + tmp <= N)
            {
                pos += tmp;
            }
            else
            {
                pos -= tmp;
            }
       
            // Print the path
            document.write(pos + " ");;
       
            coin -= tmp;
            jump -= 1;
        }
    }
     
// Driver Code
 
    let N = 5, K = 4, M = 12;
       
    // Function Call
    print_path(N, K, M);
           
</script>


Output:

5 1 4 5

Time Complexity: O(K) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
20 Oct, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments