Write code to find lexicographic minimum in a circular array, e.g. for the array BCABDADAB, the lexicographic minimum is ABBCABDAD
Input Constraint: 1 < n < 1000
Examples:
Input: GEEKSQUIZ Output: EEKSQUIZG Input: GFG Output: FGG Input : CAPABCQ Output : ABCQCAP
We have discussed a O(n2Logn) solution in Lexicographically minimum string rotation | Set 1. Here we need to find the starting index of minimum rotation and then print the rotation.
1) Initially assume 0 to be current min starting index. 2) Loop through i = 1 to n-1. a) For each i compare sequence starting at i with current min starting index b) If sequence starting at i is lexicographically smaller, update current min starting index.
Here is pseudo-code for algorithm
function findIndexForSmallestSequence(S, n): result = 0 for i = 1:n-1 if (sequence beginning at i < sequence beginning at result) result = i end if end for return result
Here is implementation of above algorithm.
Javascript
<script> // Javascript program to find lexicographically // smallest sequence with rotations. // Function to compare lexicographically // two sequence with different starting // indexes. It returns true if sequence // beginning with y is lexicographically // greater. function compareSeq(S,x,y,n) { for (let i = 0; i < n; i++) { if (S[x] < S[y]) return false ; else if (S[x] > S[y]) return true ; x = (x + 1) % n; y = (y + 1) % n; } return true ; } // Function to find starting index // of lexicographically smallest sequence function smallestSequence(S,n) { let index = 0; for (let i = 1; i < n; i++) // if new sequence is smaller if (compareSeq(S, index, i, n)) // change index of current min index = i; return index; } // Function to print lexicographically // smallest sequence function printSmallestSequence(str,n) { let S = str.split( "" ); let starting_index = smallestSequence(S, n); for (let i = 0; i < n; i++) document.write(S[(starting_index + i) % n]); } // driver code let S = "DCACBCAA" ; let n = 8; printSmallestSequence(S, n); // This code is contributed by avanitrachhadiya2155 </script> |
Output:
AADCACBC
Time Complexity : O(n^2)
Auxiliary Space : O(1)
Please refer complete article on Lexicographically smallest rotated sequence | Set 2 for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!