Monday, January 13, 2025
Google search engine
HomeData Modelling & AIFind numbers in the range L to R whose bitwise OR of...

Find numbers in the range L to R whose bitwise OR of digits is exactly K

Given integers L and R, the task is to find the number of integers in the range L to R whose bitwise OR of digits is exactly K. Print the answer.

Examples:

Input: L = 1, R = 15, K =5 
Output: 3
Explanation: 

Total three numbers 5, 14 and 15 are there whose bitwise OR of digits is exactly K = 5 

Input: L = 1, R = 100, K = 5
Output: 9

Naive approach: The basic way to solve the problem is as follows:

The basic way to solve this problem is to generate all possible combinations by using a recursive approach.

Time Complexity: O(N10)
Auxiliary Space: O(1)

Efficient Approach:  The above approach can be optimized based on the following idea:

Dynamic programming can be used to solve this problem:

  • dp[i][j][k] represents numbers in the range with i digits, j represents the tight condition and k represents the current bitwise OR sum.
  • It can be observed that the recursive function is called exponential times. 
  • That means that some states are called repeatedly. So the idea is to store the value of each state. This can be done using by the store the value of a state and whenever the function is called, returning the stored value without computing again.
  • The first answer will be calculated for 0 to L – 1 and then calculated for 0 to R then the latter one is subtracted from the prior one to get an answer for range [L, R]

Follow the steps below to solve the problem:

  • Create a recursive function that takes three parameters i representing position to be filled, j representing tight condition, and k representing bitwise OR sum of digits.
  • Call the recursive function for choosing all digits from 0 to 9.
  • In the base case, if the size of the digit is N and bitwise OR sum is K return 1 otherwise return 0.
  • Create a 3d array  dp[100001][2][16] initially filled with -1.
  • If the answer for a particular state is computed then save it in dp[i][j][k].
  • if the answer for a particular state is already computed then just return dp[i][j][k].

Below is the implementation of the above approach:

C++14




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// DP table initialized with -1
int dp[100001][2][16];
 
// Recursive Function to find numbers
// in the range L to R such that its
// bitwise OR is K.
int recur(int i, int j, int k, int T, string& a)
{
    // Base case
    if (i == a.size()) {
 
        // If bitwise OR is K
        if (k == T)
            return 1;
 
        // Otherwise return 0
        else
            return 0;
    }
 
    // If answer for current state is
    // already calculated then just
    // return dp[i][j][k]
    if (dp[i][j][k] != -1)
        return dp[i][j][k];
 
    // Answer initialized with zero
    int ans = 0;
 
    // Tight condition true
    if (j == 1) {
 
        // Iterating from 0 to max value
        // of tight condition
        for (int digit = 0; digit <= ((int)a[i] - 48);
             digit++) {
 
            // When digit is at max tight
            // condition remains even
            // in next state
            if (digit == ((int)a[i] - 48))
 
                // Calling recursive function
                // for tight digit
                ans += recur(i + 1, 1, k | digit, T, a);
 
            // Tight condition drops
            else if (digit != 0)
 
                // Calling recursive function
                // for digits less than tight
                // condition digit
                ans += recur(i + 1, 0, k | digit, T, a);
 
            else
                // Calling recursive
                // function for 0
                ans += recur(i + 1, 0, k | digit, T, a);
        }
    }
 
    // Tight condition false
    else {
 
        // Iterating for all digits
        for (int digit = 0; digit <= 9; digit++) {
 
            // Calling recursive function
            // for all digits from 0 to 9
            ans += recur(i + 1, 0, k | digit, T, a);
        }
    }
 
    // Save and return dp value
    return dp[i][j][k] = ans;
}
 
// Function to find numbers
// in the range L to R such that its
// bitwise OR is K.
int countInRange(int K, int A, int B)
{
 
    // Initializing dp array with - 1
    memset(dp, -1, sizeof(dp));
 
    A--;
    string L = to_string(A), R = to_string(B);
 
    // Numbers with bitwise OR sum of
    // digits K in the range 0 to L
    int ans1 = recur(0, 1, 0, K, L);
 
    // Initializing dp array with - 1
    memset(dp, -1, sizeof(dp));
 
    // Numbers with bitwise OR sum of
    // digits K in the range 0 to R
    int ans2 = recur(0, 1, 0, K, R);
 
    // Difference of ans2 and ans1
    // will generate answer for
    // required range
    return ans2 - ans1;
}
 
// Driver Code
int main()
{
    // Input 1
    int L = 1, R = 20, K = 5;
 
    // Function Call
    cout << countInRange(K, L, R) << endl;
 
    // Input 2
    int L1 = 1, R1 = 100, K1 = 5;
 
    // Function Call
    cout << countInRange(K1, L1, R1) << endl;
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
import java.util.*;
 
class GFG {
 
  // DP table initialized with -1
  static int[][][] dp = new int[100001][2][16];
 
  // Recursive Function to find numbers
  // in the range L to R such that its
  // bitwise OR is K.
  static int recur(int i, int j, int k, int T, String a)
  {
     
    // Base case
    if (i == a.length())
    {
       
      // If bitwise OR is K
      if (k == T) {
        return 1;
      }
       
      // Otherwise return 0
      else {
        return 0;
      }
    }
    // If answer for current state is
    // already calculated then just
    // return dp[i][j][k]
    if (dp[i][j][k] != -1) {
      return dp[i][j][k];
    }
     
    // Answer initialized with zero
    int ans = 0;
     
    // Tight condition true
    if (j == 1)
    {
       
      // Iterating from 0 to max value
      // of tight condition
      for (int digit = 0;
           digit <= (a.charAt(i) - '0'); digit++)
      {
         
        // When digit is at max tight
        // condition remains even
        // in next state
        if (digit == (a.charAt(i) - '0'))
        {
           
          // Calling recursive function
          // for tight digit
          ans += recur(i + 1, 1, k | digit, T, a);
        }
         
        // Tight condition drops
        else if (digit != 0)
        {
           
          // Calling recursive function
          // for digits less than tight
          // condition digit
          ans += recur(i + 1, 0, k | digit, T, a);
        }
        else
        {
           
          // Calling recursive
          // function for 0
          ans += recur(i + 1, 0, k | digit, T, a);
        }
      }
    }
     
    // Tight condition false
    else
    {
       
      // Iterating for all digits
      for (int digit = 0; digit <= 9; digit++)
      {
         
        // Calling recursive function
        // for all digits from 0 to 9
        ans += recur(i + 1, 0, k | digit, T, a);
      }
    }
     
    // Save and return dp value
    return dp[i][j][k] = ans;
  }
 
  // Function to find numbers
  // in the range L to R such that its
  // bitwise OR is K.
  static int countInRange(int K, int A, int B)
  {
     
    // Initializing dp array with - 1
    for (int[][] dp1 : dp) {
      for (int[] dp11 : dp1) {
        Arrays.fill(dp11, -1);
      }
    }
    A--;
    String L = Integer.toString(A),
    R = Integer.toString(B);
     
    // Numbers with bitwise OR sum of
    // digits K in the range 0 to L
    int ans1 = recur(0, 1, 0, K, L);
     
    // Initializing dp array with - 1
    for (int[][] dp1 : dp) {
      for (int[] dp11 : dp1) {
        Arrays.fill(dp11, -1);
      }
    }
     
    // Numbers with bitwise OR sum of
    // digits K in the range 0 to R
    int ans2 = recur(0, 1, 0, K, R);
     
    // Difference of ans2 and ans1
    // will generate answer for
    // required range
    return ans2 - ans1;
  }
 
  public static void main(String[] args)
  {
     
    // Input 1
    int L = 1, R = 20, K = 5;
     
    // Function Call
    System.out.println(countInRange(K, L, R));
     
    // Input 2
    int L1 = 1, R1 = 100, K1 = 5;
     
    // Function Call
    System.out.println(countInRange(K1, L1, R1));
  }
}
 
// This code is contributed by lokesh.


Python3




# Python3 code to implement the approach
 
# DP table initialized with -1
dp = [[[-1 for _ in range(16)] for _ in range(2)] for _ in range(100001)]
 
# Recursive Function to find numbers
# in the range L to R such that its
# bitwise OR is K.
def recur(i, j, k, T, a):
    # Base case
    if i == len(a):
        # If bitwise OR is K
        if k == T:
            return 1
        # Otherwise return 0
        else:
            return 0
 
    # If answer for current state is
    # already calculated then just
    # return dp[i][j][k]
    if dp[i][j][k] != -1:
        return dp[i][j][k]
 
    # Answer initialized with zero
    ans = 0
 
    # Tight condition true
    if j == 1:
        # Iterating from 0 to max value
        # of tight condition
        for digit in range(int(a[i])+1 if int(a[i]) < 9 else 10):
            # When digit is at max tight
            # condition remains even
            # in next state
            if digit == int(a[i]):
                # Calling recursive function
                # for tight digit
                ans += recur(i + 1, 1, k | digit, T, a)
            # Tight condition drops
            elif digit != 0:
                # Calling recursive function
                # for digits less than tight
                # condition digit
                ans += recur(i + 1, 0, k | digit, T, a)
            else:
                # Calling recursive
                # function for 0
                ans += recur(i + 1, 0, k | digit, T, a)
 
    # Tight condition false
    else:
        # Iterating for all digits
        for digit in range(10):
            # Calling recursive function
            # for all digits from 0 to 9
            ans += recur(i + 1, 0, k | digit, T, a)
 
    # Save and return dp value
    dp[i][j][k] = ans
    return ans
 
# Function to find numbers
# in the range L to R such that its
# bitwise OR is K.
def countInRange(K, A, B):
    # Initializing dp array with - 1
    global dp
    dp = [[[-1 for _ in range(16)] for _ in range(2)] for _ in range(100001)]
 
    A -= 1
    L = str(A)
    R = str(B)
 
    # Numbers with bitwise OR sum of
    # digits K in the range 0 to L
    ans1 = recur(0, 1, 0, K, L)
 
    # Initializing dp array with - 1
    dp = [[[-1 for _ in range(16)] for _ in range(2)] for _ in range(100001)]
 
    # Numbers with bitwise OR sum of
    # digits K in the range 0 to R
    ans2 = recur(0, 1, 0, K, R)
 
    # Difference of ans2 and ans1
    # will generate answer for
    # required range
    return ans2-ans1
 
# Driver code
def main():
    L = 1
    R = 20
    K = 5
 
    print(countInRange(K, L, R))
 
    L1 = 1
    R1 = 100
    K1 = 5
 
    print(countInRange(K1, L1, R1))
 
if __name__ == "__main__":
    main()
 
    # This code is contributed by unstoppablepandu.


C#




// C# code to implement the approach
using System;
public class GFG {
 
  // DP table initialized with -1
  static int[, , ] dp = new int[100001, 2, 16];
 
  // Recursive Function to find numbers
  // in the range L to R such that its
  // bitwise OR is K.
  static int recur(int i, int j, int k, int T, string a)
  {
 
    // Base case
    if (i == a.Length)
    {
 
      // If bitwise OR is K
      if (k == T) {
        return 1;
      }
      // Otherwise return 0
      else {
        return 0;
      }
    }
 
    // If answer for current state is
    // already calculated then just
    // return dp[i][j][k]
    if (dp[i, j, k] != -1) {
      return dp[i, j, k];
    }
 
    // Answer initialized with zero
    int ans = 0;
 
    // Tight condition true
    if (j == 1)
    {
 
      // Iterating from 0 to max value
      // of tight condition
      for (int digit = 0; digit <= (a[i] - '0');
           digit++)
      {
 
        // When digit is at max tight
        // condition remains even
        // in next state
        if (digit == (a[i] - '0'))
        {
 
          // Calling recursive function
          // for tight digit
          ans += recur(i + 1, 1, k | digit, T, a);
        }
 
        // Tight condition drops
        else if (digit != 0)
        {
 
          // Calling recursive function
          // for digits less than tight
          // condition digit
          ans += recur(i + 1, 0, k | digit, T, a);
        }
        else
        {
 
          // Calling recursive
          // function for 0
          ans += recur(i + 1, 0, k | digit, T, a);
        }
      }
    }
    // Tight condition false
    else {
      // Iterating for all digits
      for (int digit = 0; digit <= 9; digit++) {
        // Calling recursive function
        // for all digits from 0 to 9
        ans += recur(i + 1, 0, k | digit, T, a);
      }
    }
 
    // Save and return dp value
    return dp[i, j, k] = ans;
  }
 
  // Function to find numbers
  // in the range L to R such that its
  // bitwise OR is K.
  static int countInRange(int K, int A, int B)
  {
    // Initializing dp array with - 1
    for (int i = 0; i < dp.GetLength(0); i++) {
      for (int j = 0; j < dp.GetLength(1); j++) {
        for (int k = 0; k < dp.GetLength(2); k++) {
          dp[i, j, k] = -1;
        }
      }
    }
    A--;
    string L = A.ToString();
    string R = B.ToString();
 
    // Numbers with bitwise OR sum of
    // digits K in the range 0 to L
    int ans1 = recur(0, 1, 0, K, L);
 
    // Initializing dp array with - 1
    for (int i = 0; i < dp.GetLength(0); i++) {
      for (int j = 0; j < dp.GetLength(1); j++) {
        for (int k = 0; k < dp.GetLength(2); k++) {
          dp[i, j, k] = -1;
        }
      }
    }
 
    // Numbers with bitwise OR sum of
    // digits K in the range 0 to R
    int ans2 = recur(0, 1, 0, K, R);
 
    // Difference of ans2 and ans1
    // will generate answer for
    // required range
    return ans2 - ans1;
  }
 
  static public void Main()
  {
 
    // Code
    // Input 1
    int L = 1, R = 20, K = 5;
 
    // Function Call
    Console.WriteLine(countInRange(K, L, R));
 
    // Input 2
    int L1 = 1, R1 = 100, K1 = 5;
 
    // Function Call
    Console.WriteLine(countInRange(K1, L1, R1));
  }
}
 
// This code is contributed by lokeshmvs21.


Javascript




let dp = Array.from({ length: 100001 }, () => Array.from({ length: 2 }, () => Array.from({ length: 16 }, () => -1)));
 
function recur(i, j, k, T, a) {
    // Base case
    if (i == a.length) {
        // If bitwise OR is K
        if (k == T) {
            return 1;
        }
        // Otherwise return 0
        else {
            return 0;
        }
    }
 
    // If answer for current state is already
    // calculated then just return dp[i][j][k]
    if (dp[i][j][k] != -1) {
        return dp[i][j][k];
    }
 
    // Answer initialized with zero
    let ans = 0;
 
    // Tight condition true
    if (j == 1) {
        // Iterating from 0 to max value of tight condition
        for (let digit = 0; digit <= (parseInt(a[i]) < 9 ? parseInt(a[i]) : 9); digit++) {
            // When digit is at max tight condition remains even in next state
            if (digit == parseInt(a[i])) {
                // Calling recursive function for tight digit
                ans += recur(i + 1, 1, k | digit, T, a);
            }
            // Tight condition drops for digits less than tight condition digit
            else if (digit != 0) {
                // Calling recursive function for digits less than tight condition digit
                ans += recur(i + 1, 0, k | digit, T, a);
            }
            else {
                // Calling recursive function for 0
                ans += recur(i + 1, 0, k | digit, T, a);
            }
        }
    }
    // Tight condition false
    else {
        // Iterating for all digits
        for (let digit = 0; digit <= 9; digit++)
        {
         
            // Calling recursive function for all digits from 0 to 9
            ans += recur(i + 1, 0, k | digit, T, a);
        }
    }
 
    // Save and return dp value
    dp[i][j][k] = ans;
    return ans;
}
 
function countInRange(K, A, B) {
    // Initializing dp array with -1
    dp = Array.from({ length: 100001 }, () => Array.from({ length: 2 }, () => Array.from({ length: 16 }, () => -1)));
 
    A -= 1;
    let L = A.toString();
    let R = B.toString();
 
    // Numbers with bitwise OR sum of digits K in the range 0 to L
    let ans1 = recur(0, 1, 0, K, L);
 
    // Initializing dp array with -1
    dp = Array.from({ length: 100001 }, () => Array.from({ length: 2 }, () => Array.from({ length: 16 }, () => -1)));
 
    // Numbers with bitwise OR sum of digits K in the range 0 to R
    let ans2 = recur(0, 1, 0, K, R);
 
    // Difference of ans2 and ans1 will generate answer for required range
    return ans2 - ans1;
}
 
// Driver code
 
    let L = 1;
    let R = 20;
    let K = 5;
    console.log(countInRange(K, L, R));
 
    let L1 = 1;
    let R1 = 100;
    let K1 = 5;
     
 console.log(countInRange(K1, L1, R1));


Output

3
9

Time Complexity: O(log(R – L))  
Auxiliary Space: O(log(R – L))

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
21 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments