Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximize the minimum Array value by changing elements with adjacent K times

Maximize the minimum Array value by changing elements with adjacent K times

Given an array arr[] of N integers and an integer K, where K denotes the maximum number of operations which can be applied to the array, the task is to maximize the minimum value of arr[] by using the given operation at most K times.

  • In one operation it is possible to select any element of the given arr[]  and can change it with its adjacent element.

Examples:

Input: N = 7, K = 4, arr[] = {9, 7, 3, 5, 7, 8, 7}
Output: 7
Explanation: First operation: Change 3 at index 2 with 7 at index 1. 
So the arr[] becomes: {9, 7, 7, 5, 7, 8, 7}
Second Operation: Change 5 at index 3 with 7 at index 2.
So the arr[] becomes: {9, 7, 7, 7, 7, 8, 7} 
Third operation: Change 7 at index 6 with 8 at index 5.
So the arr[] becomes: {9, 7, 7, 7, 7, 8, 8}
Fourth Operation: Change 7 at index 1 with 9 at index 0.
So the arr[] becomes: {9, 9, 7, 7, 7, 8, 8}
The minimum value in arr[] after applying operation at most K times is: 7

Input: N = 4, K = 2, arr[] = {2, 5, 6, 8}
Output: 6
Explanation: First operation: Change 5 at index 1 with 6 at index 2.
So that the arr[] becomes: {2, 6, 6, 8}
Second operation: Change 2 at index 0 with 6 at index 1.
So that the arr[] becomes: {6, 6, 6, 8}
The minimum value of arr[] can be achieved by applying operations is: 6

Approach: To solve the problem follow the below idea:

Sort the arr[], if K is greater than or equal to length of arr[], simply return element at last index of arr[] else return element at Kth index of arr[]. 

Illustration with an Example: 

Consider N = 6, K = 3, arr[] = {9, 7, 3, 1, 2, 5}

We can perform the following operations

Operation 1:- Change 2 at index 4 with 5 at index 5 . So the arr[] becomes: {9, 7, 3, 1, 5, 5}
Operation 2:- Change 1 at index 3 with 5 at index 4 . So the arr[] becomes: {9, 7, 3, 5, 5, 5}
Operation 3:- Change 3 at index 2 with 7 at index 1 . So the arr[] becomes: {9, 7, 7, 5, 5, 5}
Minimum element after applying operation at most 3 times is:  5

When you will sort the arr[] and return arr[K] you will get the same output :-

Sorted arr[]: {1, 2, 3, 5, 7, 9}

arr[K] = arr[3] = 5, which is out required answer.  

Follow the steps to solve the problem:

  • Sort the array.
  • Check if K is greater than or equal to arr[] or not. 
    • If yes, then simply return the element at the last index of arr[].
    • Else return the element at the Kth index of arr[].
  • Print the output.

Below is the implementation for the above approach:

C++




// C++ code to implement the approach.
 
#include <bits/stdc++.h>
using namespace std;
 
int main() {
 
    int N = 6, K = 3 ;
      int arr[] = { 9, 1, 3, 7, 2, 5 } ;
   
      // Sorting the Array
      sort( arr, arr+N ) ;
   
      // Condition when K is greater than
    // or equal to length of arr[] then
    // returning element at last
    // index of arr[]
      if( K >= N )
      cout << arr[ N-1 ] ;
   
      // if K is less than length of
    // arr[] then returning element at Xth position
      else
      cout << arr[ K ] ;
   
    return 0;
}
 
// This code is contributed by rahulbhardwaj0711.


Java




// Java code to implement the approach.
 
import java.util.*;
 
class GFG {
 
    // Driver code
    public static void main(String[] args)
    {
        int N = 6, K = 3;
        int[] arr = { 9, 7, 3, 1, 2, 5 };
 
        // Function call
        System.out.println(Min_Value(N, K, arr));
    }
 
    // Function which is called in main()
    static int Min_Value(int N, int K, int arr[])
    {
        // Sorting arr[] with inbuilt sort
        // function in Arrays class
        Arrays.sort(arr);
 
        // Condition when K is greater than
        // or equal to length of arr[] then
        // returning element at last
        // index of arr[]
        if (K == arr.length || K > arr.length)
            return (arr[arr.length - 1]);
 
        // if K is less than length of
        // arr[] then returning
        // element at Xth position
        else
            return (arr[K]);
    }
}


Python3




# python3 code to implement the approach.
 
if __name__ == "__main__":
 
    N = 6
    K = 3
    arr = [9, 1, 3, 7, 2, 5]
 
    # Sorting the Array
    arr.sort()
 
    # Condition when K is greater than
    # or equal to length of arr[] then
    # returning element at last
    # index of arr[]
    if(K >= N):
        print(arr[N-1])
 
    # if K is less than length of
    # arr[] then returning element at Xth position
    else:
        print(arr[K])
 
    # This code is contributed by rakeshsahni


C#




// C# code to implement the approach.
 
using System;
 
public class GFG {
 
    static public void Main()
    {
 
        // Code
        int N = 6, K = 3;
        int[] arr = { 9, 7, 3, 1, 2, 5 };
 
        // Function call
        Console.WriteLine(Min_Value(N, K, arr));
    }
 
    // Function which is called in main()
    static int Min_Value(int N, int K, int[] arr)
    {
        // Sorting arr[] with inbuilt sort
        // function in Arrays class
        Array.Sort(arr);
 
        // Condition when K is greater than
        // or equal to length of arr[] then
        // returning element at last
        // index of arr[]
        if (K == arr.Length || K > arr.Length)
            return (arr[arr.Length - 1]);
 
        // if K is less than length of
        // arr[] then returning
        // element at Xth position
        else
            return (arr[K]);
    }
}
 
// This code is contributed by lokeshmvs21.


Javascript




<script>
 
  let N = 6, K = 3;
  let arr = [9, 1, 3, 7, 2, 5];
   
  // Sorting the Array
  arr.sort();
   
  // Condition when K is greater than
  // or equal to length of arr[] then
  // returning element at last
  // index of arr[]
  if( K >= N )
      document.write(arr[N-1],"</br>");
   
  // if K is less than length of
  // arr[] then returning element at Xth position
  else
       document.write(arr[K],"</br>");
  
// This code is contributed by Rohit Pradhan
  
</script>


Output

5




Time Complexity: O(N * logN), because sorting is performed.
Auxiliary Space: O(1), as no extra space is required.

Another Approach: 

  1. Sort the input array in non-decreasing order. We can use any sorting algorithm like quicksort, heapsort, or mergesort to do this.
  2. Check if the value of K is greater than or equal to the length of the array. If it is, then we can simply return the last element of the sorted array as this would be the maximum possible value that can be achieved after applying K operations.
  3. If the value of K is less than the length of the array, then we need to determine the maximum value that can be achieved by applying K operations.
  4. We can achieve this by repeatedly swapping adjacent elements that are

C++




// C++ code to implement the approach.
#include <bits/stdc++.h>
using namespace std;
 
int main() {
 
int N = 6, K = 3 ;
int arr[] = { 9, 1, 3, 7, 2, 5 } ;
 
// Partial sorting the array up to the Kth element
nth_element(arr, arr+K, arr+N);
 
// Condition when K is greater than
// or equal to length of arr[] then
// returning element at last
// index of arr[]
if( K >= N )
    cout << arr[ N-1 ] ;
 
// if K is less than length of
// arr[] then returning element at Xth position
else
    cout << arr[ K ] ;
 
return 0;
}


Java




import java.util.Arrays;
 
public class Main {
    public static void main(String[] args) {
        int N = 6, K = 3;
        int[] arr = { 9, 1, 3, 7, 2, 5 };
 
        // Partial sorting the array up to the Kth element
        Arrays.sort(arr);
 
        // Condition when K is greater than
        // or equal to the length of arr[], then
        // returning the element at the last
        // index of arr[]
        if (K >= N) {
            System.out.println(arr[N - 1]);
        }
        // if K is less than the length of
        // arr[] then returning the element at the Kth
        // position
        else {
            System.out.println(arr[K]);
        }
    }
}


Python3




# python3 code to implement the approach.
if __name__ == "__main__":
 
    N = 6
    K = 3
    arr = [9, 1, 3, 7, 2, 5]
 
    # Partial sorting the array up to the Kth element
    arr.sort()
 
    # Condition when K is greater than
    # or equal to length of arr[] then
    # returning element at last
    # index of arr[]
    if(K >= N):
        print(arr[N-1])
 
    # if K is less than length of
    # arr[] then returning element at Xth position
    else:
        print(arr[K])
 
    # This code is contributed by Prajwal Kandekar


C#




using System;
 
public class Program {
    public static void Main()
    {
        int N = 6, K = 3;
        int[] arr = { 9, 1, 3, 7, 2, 5 };
 
        // Partial sorting the array up to the Kth element
        Array.Sort(arr);
 
        // Condition when K is greater than
        // or equal to the length of arr[] then
        // returning the element at the last
        // index of arr[]
        if (K >= N) {
            Console.WriteLine(arr[N - 1]);
        }
        // if K is less than the length of
        // arr[] then returning the element at the Kth
        // position
        else {
            Console.WriteLine(arr[K]);
        }
    }
}


Javascript




// JS code to implement the approach.
 
let N = 6, K = 3 ;
let arr = [ 9, 1, 3, 7, 2, 5 ];
 
// Partial sorting the array up to the Kth element
arr.sort((a, b) => a - b);
 
// Condition when K is greater than
// or equal to length of arr[] then
// returning element at last
// index of arr[]
if( K >= N )
    console.log(arr[ N-1 ]) ;
 
// if K is less than length of
// arr[] then returning element at Xth position
else
    console.log(arr[ K ]) ;


Output

5




Time Complexity: O(N*logN)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
08 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments