Monday, January 13, 2025
Google search engine
HomeData Modelling & AICount of elements in X axis for given Q ranges

Count of elements in X axis for given Q ranges

Given a 2D array arr[][] where each array element denotes a point in the X axis and the number of elements on that point. A query array queries[] of size Q is given where each element is of type {l, r}. The task is to find the count of elements in the given range for each query.

Examples:

Input: arr[][]={ {1, 2}, {3, 2}, {4, 5}, {7, 1}, {10, 4} }, queries[] = { {0, 12}, {4, 6}, {2, 8} }
Output: 14, 5, 8
Explanation:
queries[0]: we’ll take score all elements i.e. 2 + 2 + 5 + 1 + 4 = 14
queries[1]: Only the 3rd element can be considered so the score will be 5.
queries[2]: we’ll take elements from 2nd, 3rd and 4th  position i.e. 2 + 5 + 1 = 8

Input: arr[][]={ {1, 6}, {12, 5}, {3, 4, }, {14, 3}, {5, 2} }, queries[] = { {10, 12}, {1, 5}, {10, 15} }
Output: 5, 12, 8
Explanation:
queries[0] : only 2nd element will be considered so the score will be 5 
queries[1]: we’ll take score of elements from 1st, 3rd and 5th  position i.e.  6 + 4 + 2 = 12
queries[2]: we’ll take score of elements from 2nd and 4th  position i.e. 5 + 3 = 8

Approach: 

This problem can be solved using the concepts of Prefix Sum Array, Sorting, and Binary Search.
The idea is to sort the array first and calculate the prefix sum of the array and perform binary search to find elements in array.

Follow the below steps to Implement the idea:

  • Sort the given array arr[] so that we can choose the elements easily.
  • Create a prefix sum array prefixArr[] where prefixArr[i] represents the total elements that are present from position 0 to i-1.
  • Create two variables start and end where:
    • The start represents the position such that it is greater or equal to queries[i][0] and it is closest to queries[i][0] and 
    • The end represents the position such that it is lesser or equal to queries[i][1] and it is closest to queries[i][1].
  • Find the start and end pointers using Binary Search technique.
  • The answer will be the sum of the elements that occur between positions start and end which is prefixArr[end+1] – prefixArr[start].

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum of elements
vector<long long> MaximumValue(int n, int q,
                               vector<vector<int> > arr,
                               vector<vector<int> > queries)
{
    sort(arr.begin(), arr.end());
 
    vector<long long> prefixArr(n + 1);
    vector<long long> ans(q);
 
    for (int i = 0; i < n; i++) {
        prefixArr[i + 1] = prefixArr[i] + arr[i][1];
    }
 
    // Binary search for start
    for (int i = 0; i < q; i++) {
        int start = INT_MAX, end = INT_MIN;
        int l = 0, h = n - 1;
        while (l <= h) {
            int mid = l + (h - l) / 2;
            if (arr[mid][0] >= queries[i][0]) {
                start = min(start, mid);
                h = mid - 1;
            }
            else
                l = mid + 1;
        }
 
        // Binary search for end
        l = 0, h = n - 1;
        while (l <= h) {
            int mid = l + (h - l) / 2;
            if (arr[mid][0] <= queries[i][1]) {
                end = max(end, mid);
                l = mid + 1;
            }
            else
                h = mid - 1;
        }
        if (end + 1 < 0 || start >= prefixArr.size()) {
            ans[i] = 0;
        }
        else
            ans[i] = prefixArr[end + 1] - prefixArr[start];
    }
 
    // Return the answers for all the queries
    return ans;
}
 
// Driver code
int main()
{
    int N = 5, Q = 3;
    vector<vector<int> > arr = {
        { 1, 2 }, { 3, 2 }, { 4, 5 }, { 7, 1 }, { 10, 4 }
    };
    vector<vector<int> > queries
        = { { 0, 12 }, { 4, 6 }, { 2, 8 } };
 
    // Function call
    vector<long long> ans
        = MaximumValue(N, Q, arr, queries);
    for (int x : ans)
        cout << x << " ";
 
    return 0;
}


Java




// java code to implement the approach
 
import java.io.*;
import java.util.*;
import java.util.Arrays;
 
class GFG {
 
  // Function to calculate the sum of elements
  public static int[] MaximumValue(int n, int q,
                                   int[][] arr,
                                   int[][] queries)
  {
    Arrays.sort(arr,
                (a, b) -> Integer.compare(a[0], b[0]));
    int[] prefixArr = new int[n + 1];
    int[] ans = new int[q];
 
    for (int i = 0; i < n; i++) {
      prefixArr[i + 1] = prefixArr[i] + arr[i][1];
    }
 
    // Binary search for start
    for (int i = 0; i < q; i++) {
      int start = Integer.MAX_VALUE,
      end = Integer.MIN_VALUE;
      int l = 0, h = n - 1;
      while (l <= h) {
        int mid = l + (h - l) / 2;
        if (arr[mid][0] >= queries[i][0]) {
          start = Math.min(start, mid);
          h = mid - 1;
        }
        else
          l = mid + 1;
      }
 
      // Binary search for end
      l = 0;
      h = n - 1;
      while (l <= h) {
        int mid = l + (h - l) / 2;
        if (arr[mid][0] <= queries[i][1]) {
          end = Math.max(end, mid);
          l = mid + 1;
        }
        else
          h = mid - 1;
      }
      if (end + 1 < 0 || start >= prefixArr.length) {
        ans[i] = 0;
      }
      else
        ans[i]
        = prefixArr[end + 1] - prefixArr[start];
    }
 
    // Return the answers for all the queries
    return ans;
  }
 
  public static void main(String[] args)
  {
 
    int N = 5, Q = 3;
    int[][] arr = { { 1, 2 },
                   { 3, 2 },
                   { 4, 5 },
                   { 7, 1 },
                   { 10, 4 } };
    int[][] queries = { { 0, 12 }, { 4, 6 }, { 2, 8 } };
 
    // Function call
    int[] ans = MaximumValue(N, Q, arr, queries);
    for (int x : ans)
      System.out.print(x + " ");
  }
}
 
// This code is contributed by ksam24000


Python3




# python3 code to implement the approach
 
INT_MAX = +2147483647
INT_MIN = -2147483648
 
# Function to calculate the sum of elements
 
 
def MaximumValue(n, q, arr, queries):
 
    arr.sort()
 
    prefixArr = [0 for _ in range(n + 1)]
    ans = [0 for _ in range(q)]
 
    for i in range(0, n):
        prefixArr[i + 1] = prefixArr[i] + arr[i][1]
 
    # Binary search for start
    for i in range(0, q):
        start = INT_MAX
        end = INT_MIN
        l = 0
        h = n - 1
        while (l <= h):
            mid = l + (h - l) // 2
            if (arr[mid][0] >= queries[i][0]):
                start = min(start, mid)
                h = mid - 1
 
            else:
                l = mid + 1
 
        # Binary search for end
        l = 0
        h = n - 1
        while (l <= h):
            mid = l + (h - l) // 2
            if (arr[mid][0] <= queries[i][1]):
                end = max(end, mid)
                l = mid + 1
 
            else:
                h = mid - 1
 
        if (end + 1 < 0 or start >= len(prefixArr)):
            ans[i] = 0
 
        else:
            ans[i] = prefixArr[end + 1] - prefixArr[start]
 
    # Return the answers for all the queries
    return ans
 
 
# Driver code
if __name__ == "__main__":
    N = 5
    Q = 3
    arr = [
        [1, 2], [3, 2], [4, 5], [7, 1], [10, 4]
    ]
    queries = [[0, 12], [4, 6], [2, 8]]
 
    # Function call
    ans = MaximumValue(N, Q, arr, queries)
    for x in ans:
        print(x, end=" ")
 
    # This code is contributed by rakeshsahni


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
public class HelloWorld {
 
  public static int cmp(List<int> arr, List<int> b)
  {
    if (arr[0] == b[0]) {
      return 0;
    }
    else {
      return (arr[0] < b[0]) ? -1 : 1;
    }
  }
 
  // Function to calculate the sum of elements
  public static List<long>
    MaximumValue(int n, int q, List<List<int> > arr,
                 List<List<int> > queries)
  {
    arr.Sort(cmp);
 
    List<long> prefixArr = new List<long>();
    for (int i = 0; i < n + 1; i++) {
      prefixArr.Add(0);
    }
 
    List<long> ans = new List<long>();
    for (int i = 0; i < q; i++) {
      ans.Add(0);
    }
    for (int i = 0; i < n; i++) {
      prefixArr[i + 1] = prefixArr[i] + arr[i][1];
    }
 
    // Binary search for start
    for (int i = 0; i < q; i++) {
      int start = Int32.MaxValue, end
        = Int32.MinValue;
      int l = 0;
      int h = n - 1;
      while (l <= h) {
        int mid = l + (h - l) / 2;
        if (arr[mid][0] >= queries[i][0]) {
          start = Math.Min(start, mid);
          h = mid - 1;
        }
        else
          l = mid + 1;
      }
 
      // Binary search for end
      l = 0;
      h = n - 1;
      while (l <= h) {
        int mid = l + (h - l) / 2;
        if (arr[mid][0] <= queries[i][1]) {
          end = Math.Max(end, mid);
          l = mid + 1;
        }
        else
          h = mid - 1;
      }
      if (end + 1 < 0 || start >= prefixArr.Count) {
        ans[i] = 0;
      }
      else
        ans[i]
        = prefixArr[end + 1] - prefixArr[start];
    }
 
    // Return the answers for all the queries
    return ans;
  }
 
  // Driver code
 
  public static void Main(string[] args)
  {
    int N = 5, Q = 3;
    List<List<int> > arr = new List<List<int> >();
    List<int> a1 = new List<int>();
    a1.Add(1);
    a1.Add(2);
    arr.Add(a1);
    List<int> a2 = new List<int>();
    a2.Add(3);
    a2.Add(2);
    arr.Add(a2);
    List<int> a3 = new List<int>();
    a3.Add(4);
    a3.Add(5);
    arr.Add(a3);
    List<int> a4 = new List<int>();
    a4.Add(7);
    a4.Add(1);
    arr.Add(a4);
    List<int> a5 = new List<int>();
    a5.Add(10);
    a5.Add(4);
    arr.Add(a5);
 
    List<List<int> > queries = new List<List<int> >();
    List<int> m1 = new List<int>();
    m1.Add(0);
    m1.Add(12);
    queries.Add(m1);
    List<int> m2 = new List<int>();
    m2.Add(4);
    m2.Add(6);
    queries.Add(m2);
    List<int> m3 = new List<int>();
    m3.Add(2);
    m3.Add(8);
 
    queries.Add(m3);
 
    // Function call
    List<long> ans = MaximumValue(N, Q, arr, queries);
    for (int i = 0; i < ans.Count; i++) {
      Console.Write(ans[i] + " ");
    }
  }
}
 
// This code is contributed by adityamaharshi21


Javascript




// JS code to implement the approach
function sortFunction(arr, b) {
    if (arr[0] === b[0]) {
        return 0;
    }
    else {
        return (arr[0] < b[0]) ? -1 : 1;
    }
}
// Function to calculate the sum of elements
function MaximumValue(n,q,arr,queries)
{
    arr.sort(sortFunction);
 
    let prefixArr= Array(n+1).fill(0); //(n + 1);
    let ans= Array(q).fill(0);
 
    for (let i = 0; i < n; i++) {
        prefixArr[i + 1] = prefixArr[i] + arr[i][1];
    }
 
    // Binary search for start
    for (let i = 0; i < q; i++) {
        let start = Number.MAX_VALUE, end = Number.MIN_VALUE;
        let l = 0, h = n - 1;
        while (l <= h) {
            let mid = l + Math.floor((h - l) / 2);
            if (arr[mid][0] >= queries[i][0]) {
                start = Math.min(start, mid);
                h = mid - 1;
            }
            else
                l = mid + 1;
        }
 
        // Binary search for end
        l = 0, h = n - 1;
        while (l <= h) {
            let mid = l + Math.floor((h - l) / 2);
            if (arr[mid][0] <= queries[i][1]) {
                end = Math.max(end, mid);
                l = mid + 1;
            }
            else
                h = mid - 1;
        }
        if (end + 1 < 0 || start >= prefixArr.length) {
            ans[i] = 0;
        }
        else
            ans[i] = prefixArr[end + 1] - prefixArr[start];
    }
 
    // Return the answers for all the queries
    return ans;
}
 
// Driver code
    let N = 5, Q = 3;
    let arr = [
        [ 1, 2 ], [ 3, 2 ], [ 4, 5 ], [ 7, 1 ], [ 10, 4 ]
    ];
    let queries
        = [ [0, 12 ], [ 4, 6 ], [ 2, 8 ] ];
 
    // Function call
    let ans
        = MaximumValue(N, Q, arr, queries);
    for (let x=0;x<ans.length;x++){
        console.log(ans[x]);
    }
     
// This code is contributed by ksam24000


Output

14 5 8 

Time Complexity: O(N * log N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
07 Dec, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments