Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIForm an Array so that their Bitwise XOR sum satisfies given conditions

Form an Array so that their Bitwise XOR sum satisfies given conditions

Given an array arr[] of size N ( N is even ), the task is to construct an array B[] such that the sum of B[i] XOR PrefixXor[i], where 1 ? i ? N is even and is divisible by the first N/2 elements of arr[]

PrefixXor[] array is an array where each element will indicate the XOR of all elements from 1st element to the current index element.

Examples:

Input: N = 4, arr[] = {2, 6, 1, 5}
Output: B[] = {0, 6, 3, 6}
Explanation: Since, prefix array is prefixXor[] = {2, 4, 5, 0}, (2 ^ 0) + (4 ^ 6) + (5 ^ 3) + (0^6) = 2 + 2 + 6 + 6 = 16, which is even and divisible by 8.

Input: N = 6, arr[] = {2,  5, 3,  4, 6, 1}
Output: B[] = {0, 5, 1, 5, 5, 4}
Explanation: Since  prefix, the array is prefixXor[]={2, 7, 4, 0, 6, 7}, So, (2 ^ 0) + (7 ^ 5) + (4 ^ 1) + (0 ^ 5) + (6 ^ 5) + (7 ^ 4) = 2 + 2 + 5 + 5 + 3 + 3 = 20, which is even and divisible by 10.

Approach: Implement the idea below to solve the problem:

Let’s first analyze the question. The given sum should be even and should be divisible by the first N/2 elements. So more formally it means :

if array arr[] = {a, b, c, d},  then its prefix xor is Prefix_xor[]=[a, a^b, a^b^c, a^b^c^d} 
Let assume array B[] = {x, y, z, w} then S= (x^a) + (y^(a^b)) + (z^(a^b^c)) + ( w^(a^b^c^d)). So according to the question:

  • S%2 == 0 and
  • S%(a+b) == 0

So on combining we get S % (2*(a + b)) == 0

Steps were taken to solve the problem:

  • Initialize the pointer = 0 variable to iterate over array arr[].
  • Calculate prefixXor[] array.
  • Initialize array B[] of size N.
  • While iterating over the array, if the difference == 2, increment the pointer, otherwise:
    • Store arr[pointer] ^ prefixXor[i] in B[i].
    • Increment difference by 1

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to generates valid array
// according to the given conditions
void valid_array_formation(int N, int arr[])
{
    int prefix_xor[N] = { arr[0] };
 
    // Calculating the prefix xor array
    for (int i = 1; i < N; i++) {
        prefix_xor[i] = prefix_xor[i - 1] ^ arr[i];
    }
 
    int B[N] = { 0 };
 
    // Pointer to extract which element
    // is to be extracted from array a
    int pointer = 0;
 
    int difference = 0;
 
    for (int i = 0; i < N; i++) {
 
        // If difference becomes 2 then we
        // increment the pointer
        if (difference == 2) {
            pointer++;
            difference = 0;
        }
 
        // B[i] i calculated accordingly
        B[i] = prefix_xor[i] ^ arr[pointer];
        difference++;
    }
 
    for (int i = 0; i < N; i++) {
 
        // Printing the required array b
        cout << B[i] << " ";
    }
 
    cout << endl;
}
 
// Driver code
int main()
{
 
    // Test case 1
    int N = 4;
    int arr1[] = { 2, 6, 1, 5 };
 
    // Function call
    valid_array_formation(N, arr1);
 
    // Test case 2
    N = 6;
    int arr2[] = { 2, 5, 3, 4, 6, 1 };
 
    // Function call
    valid_array_formation(N, arr2);
 
    return 0;
}


Java




// Java code to implement the approach
import java.util.*;
 
class GFG {
 
  // Function to generates valid array
  // according to the given conditions
  public static void valid_array_formation(int N,
                                           int arr[])
  {
    int prefix_xor[] = new int[N];
    prefix_xor[0] = arr[0];
 
    // Calculating the prefix xor array
    for (int i = 1; i < N; i++) {
      prefix_xor[i] = prefix_xor[i - 1] ^ arr[i];
    }
 
    int B[] = new int[N];
 
    // Pointer to extract which element
    // is to be extracted from array a
    int pointer = 0;
 
    int difference = 0;
 
    for (int i = 0; i < N; i++) {
 
      // If difference becomes 2 then we
      // increment the pointer
      if (difference == 2) {
        pointer++;
        difference = 0;
      }
 
      // B[i] i calculated accordingly
      B[i] = prefix_xor[i] ^ arr[pointer];
      difference++;
    }
 
    for (int i = 0; i < N; i++) {
 
      // Printing the required array b
      System.out.print(B[i] + " ");
    }
 
    System.out.println();
  }
 
  // Driver code
  public static void main(String args[])
  {
 
    // Test case 1
    int N = 4;
    int arr1[] = { 2, 6, 1, 5 };
 
    // Function call
    valid_array_formation(N, arr1);
 
    // Test case 2
    N = 6;
    int arr2[] = { 2, 5, 3, 4, 6, 1 };
 
    // Function call
    valid_array_formation(N, arr2);
  }
}
 
// This Code is Contributed by Prasad Kandekar(prasad264)


Javascript




// Function to generates valid array
// according to the given conditions
function validArrayFormation(N, arr) {
  let prefixXor = [arr[0]];
 
  // Calculating the prefix xor array
  for (let i = 1; i < N; i++) {
    prefixXor.push(prefixXor[i - 1] ^ arr[i]);
  }
 
  let B = Array(N).fill(0);
 
  // Pointer to extract which element
  // is to be extracted from array a
  let pointer = 0;
 
  let difference = 0;
 
  for (let i = 0; i < N; i++) {
    // If difference becomes 2 then we
    // increment the pointer
    if (difference == 2) {
      pointer++;
      difference = 0;
    }
 
    // B[i] i calculated accordingly
    B[i] = prefixXor[i] ^ arr[pointer];
    difference++;
  }
 
  // Printing the required array b
  console.log(B.join(" "));
}
 
// Test case 1
let N = 4;
let arr1 = [2, 6, 1, 5];
 
// Function call
validArrayFormation(N, arr1);
 
// Test case 2
N = 6;
let arr2 = [2, 5, 3, 4, 6, 1];
 
// Function call
validArrayFormation(N, arr2);


Python3




# Function to generates valid array
# according to the given conditions
def valid_array_formation(N, arr):
    prefix_xor = [arr[0]]
 
    # Calculating the prefix xor array
    for i in range(1, N):
        prefix_xor.append(prefix_xor[i-1] ^ arr[i])
 
    B = [0] * N
 
    # Pointer to extract which element
    # is to be extracted from array a
    pointer = 0
 
    difference = 0
 
    for i in range(N):
        # If difference becomes 2 then we
        # increment the pointer
        if difference == 2:
            pointer += 1
            difference = 0
 
        # B[i] i calculated accordingly
        B[i] = prefix_xor[i] ^ arr[pointer]
        difference += 1
 
    # Printing the required array b
    print(*B)
 
# Test case 1
N = 4
arr1 = [2, 6, 1, 5]
 
# Function call
valid_array_formation(N, arr1)
 
# Test case 2
N = 6
arr2 = [2, 5, 3, 4, 6, 1]
 
# Function call
valid_array_formation(N, arr2)


C#




using System;
 
public class Program
{
    // Function to generates valid array
    // according to the given conditions
    public static void ValidArrayFormation(int N, int[] arr)
    {
        int[] prefixXor = new int[N];
        prefixXor[0] = arr[0];
 
        // Calculating the prefix xor array
        for (int i = 1; i < N; i++)
        {
            prefixXor[i] = prefixXor[i - 1] ^ arr[i];
        }
 
        int[] B = new int[N];
 
        // Pointer to extract which element
        // is to be extracted from array a
        int pointer = 0;
 
        int difference = 0;
 
        for (int i = 0; i < N; i++)
        {
            // If difference becomes 2 then we
            // increment the pointer
            if (difference == 2)
            {
                pointer++;
                difference = 0;
            }
 
            // B[i] i calculated accordingly
            B[i] = prefixXor[i] ^ arr[pointer];
            difference++;
        }
 
        // Printing the required array b
        Console.WriteLine(string.Join(" ", B));
    }
 
    public static void Main()
    {
        // Test case 1
        int N = 4;
        int[] arr1 = new int[] { 2, 6, 1, 5 };
 
        // Function call
        ValidArrayFormation(N, arr1);
 
        // Test case 2
        N = 6;
        int[] arr2 = new int[] { 2, 5, 3, 4, 6, 1 };
 
        // Function call
        ValidArrayFormation(N, arr2);
    }
}


Output

0 6 3 6 
0 5 1 5 5 4 

Time Complexity: O(N)
Auxiliary Space : O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
28 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments