Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIWays to place 4 items in n^2 positions such that no row/column...

Ways to place 4 items in n^2 positions such that no row/column contains more than one

Given an integer N where 4 ? N ? 100. There are N lines vertically and N lines horizontally. So, There are N2 intersections. The task is find the number of ways to place 4 items in these N2 positions such that each row and column contain not more than one item.
Examples: 
 

Input: N = 4 
 

Output: 24
Input: N = 5 
Output: 600 
 

 

Approach: The number of ways to choose 4 horizontal lines that will have items from n is nC4. There are n ways to place an item on the first of these lines. Given the place of the first item, there are n – 1 ways to place an item on the second of these lines because one of the vertical lines is already taken. Given the places of the first and second items, there are n – 2 ways to place an item on the third line and the same way n – 3 for the fourth item. The total number of ways to place items on selected 4 horizontal paths is n * (n – 1) * (n – 2) * (n – 3). So the result is nC4 * n * (n – 1) * (n – 2) * (n – 3).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number of ways
// to place 4 items in n^2 positions
long long NumberofWays(int n)
{
    long long x = (1LL * (n) * (n - 1) * (n - 2) * (n - 3))
                  / (4 * 3 * 2 * 1);
    long long y = (1LL * (n) * (n - 1) * (n - 2) * (n - 3));
 
    return (1LL * x * y);
}
 
// Driver code
int main()
{
    int n = 4;
    cout << NumberofWays(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the number of ways
// to place 4 items in n^2 positions
static long NumberofWays(int n)
{
    long x = (1l * (n) * (n - 1) * (n - 2) * (n - 3))
                / (4 * 3 * 2 * 1);
    long y = (1l * (n) * (n - 1) * (n - 2) * (n - 3));
 
    return (1l * x * y);
}
 
// Driver code
public static void main(String args[])
{
    int n = 4;
    System.out.println( NumberofWays(n));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# python implementation of the approach
 
# Function to return the number of ways
# to place 4 items in n^2 positions
def NumbersofWays(n):
    x = (n * (n - 1) * (n - 2) * (n - 3)) // (4 * 3 * 2 * 1)
    y = n * (n - 1) * (n - 2) * (n - 3)
 
    return x * y
 
# Driver code
n = 4
print(NumbersofWays(n))
 
# This code is contributed by Shrikant13


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the number of ways
// to place 4 items in n^2 positions
public static long NumberofWays(int n)
{
    long x = (1l * (n) * (n - 1) * (n - 2) *
               (n - 3)) / (4 * 3 * 2 * 1);
    long y = (1l * (n) * (n - 1) * (n - 2) *
                (n - 3));
 
    return (1l * x * y);
}
 
// Driver code
public static void Main(string[] args)
{
    int n = 4;
    Console.WriteLine(NumberofWays(n));
}
}
 
// This code is contributed by Shrikant13


PHP




<?php
// PHP implementation of the approach
 
// Function to return the number of ways
// to place 4 items in n^2 positions
function NumberofWays($n)
{
    $x = (1 * ($n) * ($n - 1) *
                     ($n - 2) * ($n - 3)) /
                          (4 * 3 * 2 * 1);
    $y = (1 * ($n) * ($n - 1) *
                     ($n - 2) * ($n - 3));
 
    return (1 * $x * $y);
}
 
// Driver code
$n = 4;
echo NumberofWays($n);
 
// This code is contributed by mits
?>


Javascript




<script>
 
      // JavaScript implementation of the approach
      // Function to return the number of ways
      // to place 4 items in n^2 positions
      function NumberofWays(n) {
        var x = (1 * n * (n - 1) * (n - 2) * (n - 3)) /
        (4 * 3 * 2 * 1);
        var y = 1 * n * (n - 1) * (n - 2) * (n - 3);
 
        return 1 * x * y;
      }
 
      // Driver code
      var n = 4;
      document.write(NumberofWays(n));
       
</script>


Output: 

24

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
22 Jun, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments