Friday, January 10, 2025
Google search engine
HomeData Modelling & AIHonaker Prime Number

Honaker Prime Number

Honaker Prime Number is a prime number P such that the sum of digits of P and sum of digits of index of P is a Prime Number.
Few Honaker Prime Numbers are: 

131, 263, 457, 1039, 1049, 1091, 1301, 1361, 1433, 1571, 1913, 1933, 2141, 2221,… 

Check if N is a Honaker Prime Number

Given an integer N, the task is to check if N is a Honaker Prime Number or not. If N is an Honaker Prime Number then print “Yes” else print “No”.

Examples: 

Input: N = 131 
Output: Yes 
Explanation: 
Sum of digits of 131 = 1 + 3 + 1 = 5 
Sum of digits of 32 = 3 + 2 = 5

Input: N = 161 
Output: No 

Approach: The idea is to find the index of the given number and check if sum of digits of index and N is the same or not. If it is same then, N is an Honaker Prime Number and print “Yes” else print “No”.

C++




// C++ program for the above approach
#include <bits/stdc++.h>
#define limit 10000000
using namespace std;
 
int position[limit + 1];
 
// Function to precompute the position
// of every prime number using Sieve
void sieve()
{
    // 0 and 1 are not prime numbers
    position[0] = -1, position[1] = -1;
 
    // Variable to store the position
    int pos = 0;
 
    for (int i = 2; i <= limit; i++) {
 
        if (position[i] == 0) {
 
            // Incrementing the position for
            // every prime number
            position[i] = ++pos;
            for (int j = i * 2; j <= limit; j += i)
                position[j] = -1;
        }
    }
}
 
// Function to get sum of digits
int getSum(int n)
{
    int sum = 0;
    while (n != 0) {
        sum = sum + n % 10;
        n = n / 10;
    }
    return sum;
}
 
// Function to check whether the given number
// is Honaker Prime number or not
bool isHonakerPrime(int n)
{
    int pos = position[n];
    if (pos == -1)
        return false;
    return getSum(n) == getSum(pos);
}
 
// Driver Code
int main()
{
    // Precompute the prime numbers till 10^6
    sieve();
 
    // Given Number
    int N = 121;
 
    // Function Call
    if (isHonakerPrime(N))
        cout << "Yes";
    else
        cout << "No";
}


Java




// Java program for above approach
class GFG{
 
static final int limit = 10000000;
static int []position = new int[limit + 1];
     
// Function to precompute the position
// of every prime number using Sieve
static void sieve()
{
    // 0 and 1 are not prime numbers
    position[0] = -1;
    position[1] = -1;
     
    // Variable to store the position
    int pos = 0;
    for (int i = 2; i <= limit; i++)
    {
        if (position[i] == 0)
        {
     
            // Incrementing the position for
            // every prime number
            position[i] = ++pos;
            for (int j = i * 2; j <= limit; j += i)
                position[j] = -1;
        }
    }
}
 
// Function to get sum of digits
static int getSum(int n)
{
    int sum = 0;
    while (n != 0)
    {
        sum = sum + n % 10;
        n = n / 10;
    }
    return sum;
}
 
// Function to check whether the given number
// is Honaker Prime number or not
static boolean isHonakerPrime(int n)
{
    int pos = position[n];
    if (pos == -1)
        return false;
    return getSum(n) == getSum(pos);
}
 
// Driver code
public static void main(String[] args)
{
    // Precompute the prime numbers till 10^6
    sieve();
 
    // Given Number
    int N = 121;
 
    // Function Call
    if (isHonakerPrime(N))
        System.out.print("Yes\n");
    else
        System.out.print("No\n");
}
}
 
// This code is contributed by shubham


Python3




# Python3 program for the above approach
limit = 10000000
 
position = [0] * (limit + 1)
 
# Function to precompute the position
# of every prime number using Sieve
def sieve():
     
    # 0 and 1 are not prime numbers
    position[0] = -1
    position[1] = -1
 
    # Variable to store the position
    pos = 0
 
    for i in range(2, limit + 1):
        if (position[i] == 0):
             
            # Incrementing the position for
            # every prime number
            pos += 1
            position[i] = pos
             
            for j in range(i * 2, limit + 1, i):
                position[j] = -1
 
# Function to get sum of digits
def getSum(n):
 
    Sum = 0
     
    while (n != 0):
        Sum = Sum + n % 10
        n = n // 10
  
    return Sum
 
# Function to check whether the given
# number is Honaker Prime number or not
def isHonakerPrime(n):
 
    pos = position[n]
     
    if (pos == -1):
        return False
         
    return bool(getSum(n) == getSum(pos))
 
# Driver code
 
# Precompute the prime numbers till 10^6
sieve()
 
# Given Number
N = 121
 
# Function Call
if (isHonakerPrime(N)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by divyeshrabadiya07


C#




// C# program for above approach
using System;
class GFG{
 
static readonly int limit = 10000000;
static int []position = new int[limit + 1];
     
// Function to precompute the position
// of every prime number using Sieve
static void sieve()
{
    // 0 and 1 are not prime numbers
    position[0] = -1;
    position[1] = -1;
     
    // Variable to store the position
    int pos = 0;
    for (int i = 2; i <= limit; i++)
    {
        if (position[i] == 0)
        {
     
            // Incrementing the position for
            // every prime number
            position[i] = ++pos;
            for (int j = i * 2; j <= limit; j += i)
                position[j] = -1;
        }
    }
}
 
// Function to get sum of digits
static int getSum(int n)
{
    int sum = 0;
    while (n != 0)
    {
        sum = sum + n % 10;
        n = n / 10;
    }
    return sum;
}
 
// Function to check whether the given number
// is Honaker Prime number or not
static bool isHonakerPrime(int n)
{
    int pos = position[n];
    if (pos == -1)
        return false;
    return getSum(n) == getSum(pos);
}
 
// Driver code
public static void Main(String[] args)
{
    // Precompute the prime numbers till 10^6
    sieve();
 
    // Given Number
    int N = 121;
 
    // Function Call
    if (isHonakerPrime(N))
        Console.Write("Yes\n");
    else
        Console.Write("No\n");
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript program for above approach
     const  limit = 10000000;
    let position = Array(limit + 1).fill(0);
 
    // Function to precompute the position
    // of every prime number using Sieve
    function sieve()
    {
     
        // 0 and 1 are not prime numbers
        position[0] = -1;
        position[1] = -1;
 
        // Variable to store the position
        let pos = 0;
        for (let i = 2; i <= limit; i++)
        {
            if (position[i] == 0)
            {
 
                // Incrementing the position for
                // every prime number
                position[i] = ++pos;
                for (let j = i * 2; j <= limit; j += i)
                    position[j] = -1;
            }
        }
    }
 
    // Function to get sum of digits
    function getSum( n) {
        let sum = 0;
        while (n != 0) {
            sum = sum + n % 10;
            n = parseInt(n / 10);
        }
        return sum;
    }
 
    // Function to check whether the given number
    // is Honaker Prime number or not
    function isHonakerPrime( n) {
        let pos = position[n];
        if (pos == -1)
            return false;
        return getSum(n) == getSum(pos);
    }
 
    // Driver code
    // Precompute the prime numbers till 10^6
    sieve();
 
    // Given Number
    let N = 121;
 
    // Function Call
    if (isHonakerPrime(N))
        document.write("Yes\n");
    else
        document.write("No\n");
 
// This code is contributed by aashish1995
</script>


Output: 

No

 

Reference: https://oeis.org/A033548
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
24 Mar, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments