Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind four distinct numbers A, B, C, and D satisfying (((A|B)& C)^...

Find four distinct numbers A, B, C, and D satisfying (((A|B)& C)^ D) = N

Given a number N, the task is to find four distinct numbers A, B, C, and D such that all are distinct and non-negative satisfies the condition: (((A|B)& C)^ D) = N, where ‘ | ‘ is Bitwise ‘or’, ‘&’ is Bitwise ‘and’, ‘^’ is Bitwise ‘xor’.

Examples:

Input: N = 5
Output: A = 15, B = 0, C = 16, D = 5

Input: N = 16
Output: A = 0, B = 4, C = 3, D = 16

A = 0 , B = 63 , C = 64 , D = 16

Naive Approach: One approach to solving the given problem is to use brute force to generate all possible combinations of four distinct non-negative integers A, B, C, and D, and check whether they satisfy the given condition (((A|B)& C)^ D) = N or not. However, this approach will not be efficient for larger values of N, and hence we need a better algorithmic approach.

Efficient Approach: This can be solved with the following idea:

  • We can do this by bit manipulation concept. Let’s assume C is a number of power of two. We can make (A|B) & C equal to 0. For that A|B must be equal to (C-1). n & (n-1) = 0, when n is the power of two.
  • For that, we can make A or B equal to C – 1 and another equal to 0. By doing this we get (A|B) & C = 0. Now we know a number of two numbers is equal to 0 when the number is the same, as A^A = 0; 0^A = A. So D must be equal to N. 
  • If N == 0 then a special case arises, then we have to find A as a power of two and B = A – 1. By that, we can find an integer X-1 where X is the power of two. for that, we can make C = X and D = 0. And we can make the answer.

Below is the implementation of the above approach :

C++




// C++ Implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
int bitcount(int n) { return (int)log2(n) + 1; }
 
void FindSquad(int N)
{
 
    // Initialized the squad
    // variable a, b, c, d
    int a, b, c, d;
 
    // Find the bit of the given number
    int power = bitcount(N) + 1;
 
    c = (1 << power);
 
    // Taking a = 0
    a = 0;
 
    // B = C-1 by that we made
    // (A|B) & C == 0
    b = c - 1;
 
    // Now make the D = N
    d = N;
 
    // For N == 0 taking the special
    // case which is already initialized
    // at explanation
    if (N == 0) {
        a = 4;
        b = 3;
        c = 8;
        d = 0;
    }
 
    // Giving the output
    cout << "A = " << a << " "
         << ", B = " << b << " "
         << ", C = " << c << " "
         << ", D = " << d << endl;
 
    return;
}
 
// Drivers code
signed main()
{
    int n = 5;
 
    // Calling the function findsquad
    FindSquad(n);
 
    return 0;
}


Java




// Java Implementation of the above approach
import java.util.*;
 
class Main {
    static int bitcount(int n)
    {
        return (int)(Math.log(n) / Math.log(2)) + 1;
    }
 
    static void FindSquad(int N)
    {
 
        // Initialized the squad
        // variable a, b, c, d
        int a, b, c, d;
 
        // Find the bit of the given number
        int power = bitcount(N) + 1;
 
        c = (1 << power);
 
        // Taking a = 0
        a = 0;
 
        // B = C-1 by that we made
        // (A|B) & C == 0
        b = c - 1;
 
        // Now make the D = N
        d = N;
 
        // For N == 0 taking the special
        // case which is already initialized
        // at explanation
        if (N == 0) {
            a = 4;
            b = 3;
            c = 8;
            d = 0;
        }
 
        // Giving the output
        System.out.println("A = " + a + ", B = " + b
                           + ", C = " + c + ", D = " + d);
    }
 
    // Drivers code
    public static void main(String[] args)
    {
        int n = 5;
 
        // Calling the function findsquad
        FindSquad(n);
    }
}
// This code is contributed by Prajwal Kandekar


Python3




# Python Implementation of the above approach
import math
 
 
def bitcount(n):
    return (int)(math.log2(n)) + 1
 
 
def FindSquad(N):
    # Initialized the squad
    # variable a, b, c, d
    a, b, c, d = 0, 0, 0, 0
 
    # Find the bit of the given number
    power = bitcount(N) + 1
 
    c = (1 << power)
 
    # Taking a = 0
    a = 0
 
    # B = C-1 by that we made
    # (A|B) & C == 0
    b = c - 1
 
    # Now make the D = N
    d = N
 
    # For N == 0 taking the special
    # case which is already initialized
    # at explanation
    if (N == 0):
        a = 4
        b = 3
        c = 8
        d = 0
 
    # Giving the output
    print("A = ", a, ", B = ", b, ", C = ", c, ", D = ", d)
 
 
# Driver code
if __name__ == "__main__":
    n = 5
 
    # Calling the function findsquad
    FindSquad(n)
 
# This code is contributed by Tapesh(tapeshdua420)


C#




using System;
 
public class Program
{
    static int bitcount(int n)
    {
        return (int)Math.Log(n, 2) + 1;
    }
 
    static void FindSquad(int N)
    {
        // Initialized the squad
        // variable a, b, c, d
        int a, b, c, d;
 
        // Find the bit of the given number
        int power = bitcount(N) + 1;
 
        c = (1 << power);
 
        // Taking a = 0
        a = 0;
 
        // B = C-1 by that we made
        // (A|B) & C == 0
        b = c - 1;
 
        // Now make the D = N
        d = N;
 
        // For N == 0 taking the special
        // case which is already initialized
        // at explanation
        if (N == 0)
        {
            a = 4;
            b = 3;
            c = 8;
            d = 0;
        }
 
        // Giving the output
        Console.WriteLine("A = {0}, B = {1}, C = {2}, D = {3}", a, b, c, d);
    }
 
    public static void Main(string[] args)
    {
        int n = 5;
 
        // Calling the function FindSquad
        FindSquad(n);
    }
}


Javascript




// Javascript Implementation of the above approach
 
function bitCount(n) {
  return Math.floor(Math.log2(n)) + 1;
}
function findSquad(N) {
  let a, b, c, d;
  // Find the bit of the given number
  const power = bitCount(N) + 1;
  c = 1 << power;
  // Taking a = 0
  a = 0;
  // B = C-1 by that we made (A|B) & C == 0
  b = c - 1;
  // Now make the D = N
  d = N;
  // For N == 0 taking the special case
  if (N === 0) {
    a = 4;
    b = 3;
    c = 8;
    d = 0;
  }
  // Output the values
  console.log(`A = ${a}, B = ${b}, C = ${c}, D = ${d}`);
}
// Driver code
const n = 5;
findSquad(n);


Output

A = 0, B = 15, C = 16, D = 5

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
10 Jul, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments