Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind the Array which when sorted forms an AP and has minimum...

Find the Array which when sorted forms an AP and has minimum maximum

Given three positive integers N, X, and Y(X<Y). The task is to find an array of length N containing both X and Y, and when sorted in increasing order, the array must form an arithmetic progression

Examples:

Input: N = 5, X = 20, Y = 50
Output: 20 30 40 50 10 
Explanation: The array when sorted in increasing order forms an arithmetic progression with common difference 10.

Input: N = 17, X = 23445, Y = 1000000
Output: 23445 218756 414067 609378 804689 1000000 1195311 1390622 1585933 1781244 1976555 2171866 2367177 2562488 2757799 2953110 3148421 
Explanation: The array when sorted in increasing order forms an arithmetic progression with common difference 195311.

 

Approach: In this problem, it can be observed that if the maximum element is to be minimized, then it can be assumed that Y should be the greatest element. If Y is the greatest, then each of the remaining elements will be less than or equal to Y. If Y is not the greatest element in the array, then elements greater than Y can be considered.

Follow the steps below to solve the given problem:

  • Check if some elements which have a common difference are present between X and Y. For this, check if (Y-X) is divisible by (N-1). If it is divisible, then decrease N and the common difference d is given by:

d = (Y-X)/(N-1)

  • If it is not divisible, then decrease (n-1) and repeat the above step in a loop till the denominator is non-zero.
  • If there don’t exist any such elements between X and Y, then the common difference d is given by:

d = (Y-X)

  • Let the resultant array be stored in vector ans. Push the elements found between X and Y in the vector ans to use a for loop.
  • If N is not equal to zero, insert the elements in ans starting from (X-d) with common difference d.
  • If N is equal to zero, output ans. Otherwise, insert the elements in ans starting from (Y+d) till the required array is obtained.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the array which when
// sorted forms an arithmetic progression
// and has the minimum possible maximum element
void findArray(int N, int X, int Y)
{
    // Stores the difference of Y and X
    int r = Y - X;
 
    // To indicate the absence of required
    // elements between X and Y
    int d = -1;
 
    // Stores the number of required elements
    // present between X and Y
    int num = 0;
 
    // Loop to find the number of required
    // elements between X and Y
    for (int i = (N - 1); i > 0; i--) {
 
        // If r is divisible by i
        if (r % i == 0) {
 
            // Stores the common difference
            // of the elements
            d = r / i;
 
            // Decrease num by 1
            num = i - 1;
 
            // Break from the loop
            break;
        }
    }
 
    // If the number of elements present
    // between X and Y is zero
    if (d == -1) {
 
        // Update common difference
        d = Y - X;
    }
 
    // Update N
    N = N - 2 - num;
 
    // Stores the resultant array
    vector<int> ans;
 
    // Loop to insert the found elements
    // in the resultant vector
    for (int i = X; i <= Y; i += d) {
        ans.push_back(i);
    }
 
    // Stores the element to be inserted in
    // the resultant vector
    int i = X;
 
    // Loop to insert elements less than X
    // in the resultant vector
    while (N > 0 && i > 0) {
        i = i - d;
 
        // i must be positive
        if (i > 0) {
            ans.push_back(i);
 
            // Update N
            N--;
        }
    }
 
    // Stores the element to be inserted in
    // the resultant vector
    i = Y;
 
    // Loop to insert elements greater than Y
    // in the resultant vector
    while (N > 0) {
        i = i + d;
        ans.push_back(i);
 
        // Update N
        N--;
    }
 
    // Output the required array
    for (int i = 0; i < ans.size(); ++i) {
        cout << ans[i] << " ";
    }
}
 
// Driver Code
int main()
{
    // Given N, X and Y
    int N = 5, X = 20, Y = 50;
 
    // Function Call
    findArray(N, X, Y);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.ArrayList;
 
class GFG {
 
    // Function to find the array which when
    // sorted forms an arithmetic progression
    // and has the minimum possible maximum element
    static void findArray(int N, int X, int Y) {
 
        // Stores the difference of Y and X
        int r = Y - X;
 
        // To indicate the absence of required
        // elements between X and Y
        int d = -1;
 
        // Stores the number of required elements
        // present between X and Y
        int num = 0;
 
        // Loop to find the number of required
        // elements between X and Y
        for (int i = (N - 1); i > 0; i--) {
 
            // If r is divisible by i
            if (r % i == 0) {
 
                // Stores the common difference
                // of the elements
                d = r / i;
 
                // Decrease num by 1
                num = i - 1;
 
                // Break from the loop
                break;
            }
        }
 
        // If the number of elements present
        // between X and Y is zero
        if (d == -1) {
 
            // Update common difference
            d = Y - X;
        }
 
        // Update N
        N = N - 2 - num;
 
        // Stores the resultant array
        ArrayList<Integer> ans = new ArrayList<Integer>();
 
        // Loop to insert the found elements
        // in the resultant vector
        for (int i = X; i <= Y; i += d) {
            ans.add(i);
        }
 
        // Stores the element to be inserted in
        // the resultant vector
        int j = X;
 
        // Loop to insert elements less than X
        // in the resultant vector
        while (N > 0 && j > 0) {
            j = j - d;
 
            // i must be positive
            if (j > 0) {
                ans.add(j);
 
                // Update N
                N--;
            }
        }
 
        // Stores the element to be inserted in
        // the resultant vector
        j = Y;
 
        // Loop to insert elements greater than Y
        // in the resultant vector
        while (N > 0) {
            j = j + d;
            ans.add(j);
 
            // Update N
            N--;
        }
 
        // Output the required array
        for (int i = 0; i < ans.size(); ++i) {
            System.out.print(ans.get(i) + " ");
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
       
        // Given N, X and Y
        int N = 5, X = 20, Y = 50;
 
        // Function Call
        findArray(N, X, Y);
    }
}
 
 // This code is contributed by gfgking.


Python3




# python program for the above approach
 
# Function to find the array which when
# sorted forms an arithmetic progression
# and has the minimum possible maximum element
def findArray(N, X, Y):
 
    # Stores the difference of Y and X
    r = Y - X
 
    # To indicate the absence of required
    # elements between X and Y
    d = -1
 
    # Stores the number of required elements
    # present between X and Y
    num = 0
 
    # Loop to find the number of required
    # elements between X and Y
    for i in range(N - 1, 0, -1):
 
        # If r is divisible by i
        if (r % i == 0):
 
            # Stores the common difference
            # of the elements
            d = r // i
 
            # Decrease num by 1
            num = i - 1
 
            # Break from the loop
            break
 
    # If the number of elements present
    # between X and Y is zero
    if (d == -1):
 
        # Update common difference
        d = Y - X
 
    # Update N
    N = N - 2 - num
 
    # Stores the resultant array
    ans = []
 
    # Loop to insert the found elements
    # in the resultant vector
    for i in range(X, Y + 1, d):
        ans.append(i)
 
    # Stores the element to be inserted in
    # the resultant vector
    i = X
 
    # Loop to insert elements less than X
    # in the resultant vector
    while (N > 0 and i > 0):
        i = i - d
 
        # i must be positive
        if (i > 0):
            ans.append(i)
 
            # Update N
            N -= 1
 
    # Stores the element to be inserted in
    # the resultant vector
    i = Y
 
    # Loop to insert elements greater than Y
    # in the resultant vector
    while (N > 0):
        i = i + d
        ans.append(i)
 
        # Update N
        N -= 1
 
    # Output the required array
    for i in range(0, len(ans)):
        print(ans[i], end=" ")
 
# Driver Code
if __name__ == "__main__":
 
    # Given N, X and Y
    N = 5
    X = 20
    Y = 50
 
    # Function Call
    findArray(N, X, Y)
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
   
// Function to find the array which when
// sorted forms an arithmetic progression
// and has the minimum possible maximum element
static void findArray(int N, int X, int Y)
{
   
    // Stores the difference of Y and X
    int r = Y - X;
 
    // To indicate the absence of required
    // elements between X and Y
    int d = -1;
 
    // Stores the number of required elements
    // present between X and Y
    int num = 0;
 
    // Loop to find the number of required
    // elements between X and Y
    for (int i = (N - 1); i > 0; i--) {
 
        // If r is divisible by i
        if (r % i == 0) {
 
            // Stores the common difference
            // of the elements
            d = r / i;
 
            // Decrease num by 1
            num = i - 1;
 
            // Break from the loop
            break;
        }
    }
 
    // If the number of elements present
    // between X and Y is zero
    if (d == -1) {
 
        // Update common difference
        d = Y - X;
    }
 
    // Update N
    N = N - 2 - num;
 
    // Stores the resultant array
    List<int> ans = new List<int>();
 
    // Loop to insert the found elements
    // in the resultant vector
    for (int i = X; i <= Y; i += d) {
        ans.Add(i);
    }
 
    // Stores the element to be inserted in
    // the resultant vector
    int j = X;
 
    // Loop to insert elements less than X
    // in the resultant vector
    while (N > 0 && j > 0) {
        j = j - d;
 
        // i must be positive
        if (j > 0) {
            ans.Add(j);
 
            // Update N
            N--;
        }
    }
 
    // Stores the element to be inserted in
    // the resultant vector
    j = Y;
 
    // Loop to insert elements greater than Y
    // in the resultant vector
    while (N > 0) {
        j = j + d;
        ans.Add(j);
 
        // Update N
        N--;
    }
 
    // Output the required array
    for (int i = 0; i < ans.Count; ++i) {
        Console.Write( ans[i] + " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    // Given N, X and Y
    int N = 5, X = 20, Y = 50;
 
    // Function Call
    findArray(N, X, Y);
}
}
 
// This code is contributed by code_hunt.


Javascript




<script>
 
       // JavaScript Program to implement
       // the above approach
 
       // Function to find the array which when
       // sorted forms an arithmetic progression
       // and has the minimum possible maximum element
       function findArray(N, X, Y)
       {
        
           // Stores the difference of Y and X
           let r = Y - X;
 
           // To indicate the absence of required
           // elements between X and Y
           let d = -1;
 
           // Stores the number of required elements
           // present between X and Y
           let num = 0;
 
           // Loop to find the number of required
           // elements between X and Y
           for (let i = (N - 1); i > 0; i--) {
 
               // If r is divisible by i
               if (r % i == 0) {
 
                   // Stores the common difference
                   // of the elements
                   d = r / i;
 
                   // Decrease num by 1
                   num = i - 1;
 
                   // Break from the loop
                   break;
               }
           }
 
           // If the number of elements present
           // between X and Y is zero
           if (d == -1) {
 
               // Update common difference
               d = Y - X;
           }
 
           // Update N
           N = N - 2 - num;
 
           // Stores the resultant array
           let ans = [];
 
           // Loop to insert the found elements
           // in the resultant vector
           for (let i = X; i <= Y; i += d) {
               ans.push(i);
           }
 
           // Stores the element to be inserted in
           // the resultant vector
           let i = X;
 
           // Loop to insert elements less than X
           // in the resultant vector
           while (N > 0 && i > 0) {
               i = i - d;
 
               // i must be positive
               if (i > 0) {
                   ans.push(i);
 
                   // Update N
                   N--;
               }
           }
 
           // Stores the element to be inserted in
           // the resultant vector
           i = Y;
 
           // Loop to insert elements greater than Y
           // in the resultant vector
           while (N > 0) {
               i = i + d;
               ans.push(i);
 
               // Update N
               N--;
           }
 
           // Output the required array
           for (let i = 0; i < ans.length; ++i) {
               document.write(ans[i] + " ");
           }
       }
 
       // Driver Code
 
       // Given N, X and Y
       let N = 5, X = 20, Y = 50;
 
       // Function Call
       findArray(N, X, Y);
 
   // This code is contributed by Potta Lokesh
   </script>


Output

20 30 40 50 10 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
29 Nov, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments