Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICheck if L sized Subarray of first N numbers can have sum...

Check if L sized Subarray of first N numbers can have sum S with one deletion allowed

Consider an integer sequence A = {1, 2, 3, …., N} i.e. the first N natural numbers in order and two integers, L and S. Check whether there exists a subarray of length L and sum S after removing at most one element from A.

Examples:

Input: N = 5, L = 3, S = 11
Output: YES
Explanation: We can remove 3 from A to obtain A = {1, 2, 4, 5} where {2, 4, 5} is a required subarray of size 3 and sum 11.

Input: N = 5, L = 3, S = 5
Output: NO
Explanation:  For the above input its not possible to determine a subarray with the required conditions.

Approach: The problem can be solved based on the following observation:

The observations are

  • The first observation is that if the given sum is less than the minimum sum or greater than the maximum sum then it is obvious that we can’t form or find a subarray. The minimum sum would be the sum of the first L natural numbers and the maximum sum would be the sum of the last L natural numbers.
  • The second observation is that if the given sum is in between the minimum and maximum sum then it is always possible to obtain the sum because the sequence contains all the numbers in the natural numbers order so that we can always make a sub-array with the given sum provided by removing at most one element from the sequence.
     

Follow the steps mentioned below to implement the idea:

  • First find out the sum of the first L natural numbers and the sum of the last L natural numbers.
    • The sum of the first N natural numbers (N * (N + 1))/2.
    • So the sum of the last L natural numbers can be found like this: sum of first N natural numbers – sum of first (N-L) natural numbers.
  • Check if S lies within the range of [sum of first L natural number, sum of last L natural numbers]. If the condition is satisfied then the sum exists.

Below is the implementation of the above approach.

C++




// C++ code to implement the idea
 
#include <bits/stdc++.h>
using namespace std;
 
// Function the return sum of first N natural numbers
int findSum(int n)
{
    return n * (n + 1) / 2;
}
 
// Function to check if the sum exists
bool isPossible(int n, int l, int s)
{
    // Minimum sum will be sum of first l numbers
    int minimumSum = findSum(l);
 
    // Maximum sum will be sum of last l numbers
    int maximumSum = findSum(n) - findSum(n - l);
 
    // Checking if the given sum is not falling within the
    // range then print NO else Print YES
    if (s < minimumSum || s > maximumSum)
        return false;
    return true;
}
 
// Driver code
int main()
{
    int N = 5, L = 3, S = 11;
 
    // Function call
    if (isPossible(N, L, S))
        cout << "YES";
    else
        cout << "NO";
 
    return 0;
}


Java




public class GFG {
 
    // Function to return the sum of first N natural numbers
    static int findSum(int n) {
        return n * (n + 1) / 2;
    }
 
    // Function to check if the sum exists
    static boolean isPossible(int n, int l, int s) {
        // Minimum sum will be sum of first l numbers
        int minimumSum = findSum(l);
 
        // Maximum sum will be sum of last l numbers
        int maximumSum = findSum(n) - findSum(n - l);
 
        // Checking if the given sum is not falling within the
        // range then return false else return true
        if (s < minimumSum || s > maximumSum)
            return false;
        return true;
    }
 
    public static void main(String[] args) {
        int N = 5, L = 3, S = 11;
 
        // Function call
        if (isPossible(N, L, S))
            System.out.println("YES");
        else
            System.out.println("NO");
    }
}
// this code is contributed by uttamdp_10


Python3




# python code to implement the idea
 
# Function to return the sum of first N natural numbers
def findSum(n):
    return n * (n + 1) // 2
 
# Function to check if the sum exists
def isPossible(n, l, s):
    # Minimum sum will be the sum of the first l numbers
    minimumSum = findSum(l)
 
    # Maximum sum will be the sum of the last l numbers
    maximumSum = findSum(n) - findSum(n - l)
 
    # Checking if the given sum is not falling within the range
    if s < minimumSum or s > maximumSum:
        return False
    return True
 
# Driver code
N = 5
L = 3
S = 11
 
# Function call
if isPossible(N, L, S):
    print("YES")
else:
    print("NO")


C#




// c# code to implement the idea
 
using System;
 
class GFG
{
    // Function that returns the sum of the first N natural numbers
    static int FindSum(int n)
    {
        return n * (n + 1) / 2;
    }
 
    // Function to check if the sum exists
    static bool IsPossible(int n, int l, int s)
    {
        // Minimum sum will be the sum of the first l numbers
        int minimumSum = FindSum(l);
 
        // Maximum sum will be the sum of the last l numbers
        int maximumSum = FindSum(n) - FindSum(n - l);
 
        // Checking if the given sum falls within the range,
      // then return true; otherwise, return false
        if (s < minimumSum || s > maximumSum)
            return false;
        return true;
    }
 
    static void Main(string[] args)
    {
        int N = 5, L = 3, S = 11;
 
        // Function call
        if (IsPossible(N, L, S))
            Console.WriteLine("YES");
        else
            Console.WriteLine("NO");
    }
}


Javascript




// Function the return sum of first N natural numbers
function findSum(n) {
    return n * (n + 1) / 2;
}
 
// Function to check if the sum exists
function isPossible(n, l, s) {
    // Minimum sum will be sum of first l numbers
    let minimumSum = findSum(l);
    // Maximum sum will be sum of last l numbers
    let maximumSum = findSum(n) - findSum(n - l);
    // Checking if the given sum is not falling within the
    // range then return false else return true
    if (s < minimumSum || s > maximumSum)
        return false;
    return true;
}
 
// Driver code
let N = 5, L = 3, S = 11;
// Function call
if (isPossible(N, L, S))
    console.log("YES");
else
    console.log("NO");


Output

YES







Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
18 Sep, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments