Given an array arr[], the task is to find the maximum sum possible such that any subarray of the indices from [l, r] i.e all subarray elements from arr[l] to arr[r] can be replaced with |arr[l] – arr[r]| any number of times.
Examples:
Input: arr[] = { 9, 1}
Output: 16
Explanation: The subarray [l, r] can choose as [0, 1] so it can be replaced as { | 9 – 1 |, | 9 – 1 | } = {8, 8} this is the only array that gives the maximum sum as 16.Input: arr[] = {1, 1, 1}
Output: 3
Explanation: The array from indices [1, 2] can be chosen then the array becomes {1, |1 – 1|, |1 – 1| } which is equal to {1, 0, 0} now choosing the subarray from indices [0, 2] the array becomes { | 1 – 0 |, |1 – 0 |, | 1 – 0 |} which is equal to {1, 1, 1}. The maximum possible sum is 3.
Approach: To solve the problem follow the below idea:
This problem can be solved greedily by figuring out a way through observations for replacing the array with the maximum elements. The observation is like if any else chooses max one) having more than two elements to the left or right we can replace the array with that elements by doing the following operations:
Consider n = 4 and maximum element is arr[1] so {arr[0], arr[1], arr[2], arr[3]}
- In the first operation choosing subarray [2, 3] the array becomes {arr[0 ], arr[1], |arr[2] – arr[3]|, |arr[2] – arr[3]|}
- In the second operation choosing subarray [2, 3] the array becomes { arr[0], arr[1], 0, 0}
- In the third operation choosing the subarray [1, 3] the array becomes { arr[0], arr[1], arr[1], arr[1]}
- In the fourth operation on choosing the subarray [0, 1] the array becomes {| arr[0] – arr[1]|, |arr[0] – arr[1]|, arr[1], arr[1]}
- In the 5th and 6th operations we choose subarrays [0, 1] and [0, 2] and the final array becomes {arr[1], arr[1], arr[1], arr[1]}.
In this way for n > 4 we can replace all the array elements with the max element of the array.
- Edge cases for n = 3, n = 2:
- For n = 2 we take max({2 * abs(arr[0] – arr[1]), arr[0] + arr[1]});
- For n = 3 we take max({3 * (abs(arr[0] – arr[1])), 3 * (abs(arr[2] – arr[1])), 3 * arr[0], 3 * arr[2], arr[0] + arr[1] + arr[2]} because the middle element doesn’t have 2 elements on either of the sides for n = 3.
Follow these steps to solve the above problem:
- Check if the size of the array is 2 only possible sums are 2 * abs(arr[0] – arr[1]), arr[0] + arr[1] return max of all.
- Check if the size of the arrays is 3 all possible sums are 3 * (abs(arr[0] – arr[1])), 3 * (abs(arr[2] – arr[1])), 3 * arr[0], 3 * arr[2], arr[0] + arr[1] + arr[2] return a max of all.
- If the size is >3 then we can replace all the elements with the maximum element
- Initialize a variable mx = 0.
- Iterate through the array and find the maximum element
- Return n*mx.
Below is the implementation of the above approach:
C++
// C++ code for the above approach #include <bits/stdc++.h> using namespace std; int find_maxsum( int arr[], int n) { // If size of the array is 2 only // possible sums are // 2 * abs(arr[0] - arr[1]), // arr[0] + arr[1] if (n == 2) return max( { 2 * abs (arr[0] - arr[1]), arr[0] + arr[1] }); // If the size of the arrays is 3 all // possible sums are // 3 * (abs(arr[0] - arr[1])), // 3 * (abs(arr[2] - arr[1])), // 3 * arr[0], 3 * arr[2], // arr[0] + arr[1] + arr[2] else if (n == 3) return max({ 3 * ( abs (arr[0] - arr[1])), 3 * ( abs (arr[2] - arr[1])), 3 * arr[0], 3 * arr[2], arr[0] + arr[1] + arr[2] }); // If the size is >3 then we can replace // all the elements with the maxmimum // element, Initialize a variable // mx = 0, Iterate throghh the array // and find the maximum element int mx = 0; for ( int i = 0; i < n; i++) mx = max(arr[i], mx); // Return n* mx return n * mx; } // Driver Code int main() { int arr[] = { 1, 9 }; int n = sizeof (arr) / sizeof (arr[0]); int arr2[] = { 1, 1, 1 }; int m = sizeof (arr2) / sizeof (arr2[0]); // Function Call cout << find_maxsum(arr, n) << endl; cout << find_maxsum(arr2, m) << endl; } |
Java
import java.util.*; public class Main { public static int findMaxSum( int [] arr, int n) { // If the size of the array is 2, the only // possible sums are 2 * abs(arr[0] - arr[1]) // and arr[0] + arr[1] if (n == 2 ) { return Math.max( 2 * Math.abs(arr[ 0 ] - arr[ 1 ]), arr[ 0 ] + arr[ 1 ]); } // If the size of the array is 3, all possible // sums are 3 * (abs(arr[0] - arr[1])), // 3 * (abs(arr[2] - arr[1])), 3 * arr[0], // 3 * arr[2], and arr[0] + arr[1] + arr[2] else if (n == 3 ) { int [] possibleSums = { 3 * (Math.abs(arr[ 0 ] - arr[ 1 ])), 3 * (Math.abs(arr[ 2 ] - arr[ 1 ])), 3 * arr[ 0 ], 3 * arr[ 2 ], arr[ 0 ] + arr[ 1 ] + arr[ 2 ] }; return Arrays.stream(possibleSums) .max() .getAsInt(); } // If the size is greater than 3, replace // all the elements with the maximum // element. Initialize a variable mx = 0, // and find the maximum element. int mx = 0 ; for ( int i = 0 ; i < n; i++) { mx = Math.max(arr[i], mx); } // Return n * mx return n * mx; } public static void main(String[] args) { int [] arr = { 1 , 9 }; int n = arr.length; int [] arr2 = { 1 , 1 , 1 }; int m = arr2.length; // Function call for first array System.out.println(findMaxSum(arr, n)); // Function call for second array System.out.println(findMaxSum(arr2, m)); } } // This code is contributed by hkdass001. |
Python3
#Python code for the above approach import sys def findMaxSum(arr, n): # If the size of the array is 2, the only # possible sums are 2 * abs(arr[0] - arr[1]) # and arr[0] + arr[1] if (n = = 2 ): return max ( 2 * abs (arr[ 0 ] - arr[ 1 ]), arr[ 0 ] + arr[ 1 ]) # If the size of the array is 3, all possible # sums are 3 * (abs(arr[0] - arr[1])), # 3 * (abs(arr[2] - arr[1])), 3 * arr[0], # 3 * arr[2], and arr[0] + arr[1] + arr[2] elif (n = = 3 ): possibleSums = [ 3 * abs (arr[ 0 ] - arr[ 1 ]), 3 * abs (arr[ 2 ] - arr[ 1 ]), 3 * arr[ 0 ], 3 * arr[ 2 ], arr[ 0 ] + arr[ 1 ] + arr[ 2 ]] return max (possibleSums) # If the size is greater than 3, replace # all the elements with the maximum # element. Initialize a variable mx = 0, # and find the maximum element. mx = 0 for i in range (n): mx = max (arr[i], mx) # Return n * mx return n * mx def main(): arr = [ 1 , 9 ] n = len (arr) arr2 = [ 1 , 1 , 1 ] m = len (arr2) # Function call for first array print (findMaxSum(arr, n)) # Function call for second array print (findMaxSum(arr2, m)) if __name__ = = "__main__" : sys.exit( int (main() or 0 )) #This code is contributed by shivamsharma215 |
C#
// C# code implementation for the above approach using System; using System.Linq; public class GFG { static int findMaxSum( int [] arr, int n) { // If the size of the array is 2, the only possible // sums are 2 * abs(arr[0] - arr[1]) and arr[0] + // arr[1] if (n == 2) { return Math.Max(2 * Math.Abs(arr[0] - arr[1]), arr[0] + arr[1]); } // If the size of the array is 3, all possible sums // are 3 * (abs(arr[0] - arr[1])), 3 * (abs(arr[2] - // arr[1])), 3 * arr[0], 3 * arr[2], and arr[0] + // arr[1] + arr[2] else if (n == 3) { int [] possibleSums = { 3 * (Math.Abs(arr[0] - arr[1])), 3 * (Math.Abs(arr[2] - arr[1])), 3 * arr[0], 3 * arr[2], arr[0] + arr[1] + arr[2] }; return possibleSums.Max(); } // If the size is greater than 3, replace all the // elements with the maximum element. Initialize a // variable mx = 0, and find the maximum element. int mx = 0; for ( int i = 0; i < n; i++) { mx = Math.Max(arr[i], mx); } // Return n * mx return n * mx; } static public void Main() { // Code int [] arr = { 1, 9 }; int n = arr.Length; int [] arr2 = { 1, 1, 1 }; int m = arr2.Length; // Function call for first array Console.WriteLine(findMaxSum(arr, n)); // Function call for second array Console.WriteLine(findMaxSum(arr2, m)); } } // This code is contributed by sankar. |
Javascript
// Javascript code for the above approach function find_maxsum( arr, n) { // If size of the array is 2 only // possible sums are // 2 * abs(arr[0] - arr[1]), // arr[0] + arr[1] if (n == 2) return Math.max( 2 * Math.abs(arr[0] - arr[1]), Math.max(arr[0] + arr[1] )); // If the size of the arrays is 3 all // possible sums are // 3 * (abs(arr[0] - arr[1])), // 3 * (abs(arr[2] - arr[1])), // 3 * arr[0], 3 * arr[2], // arr[0] + arr[1] + arr[2] else if (n == 3) return Math.max( 3 * (Math.abs(arr[0] - arr[1])), Math.max(3 * (Math.abs(arr[2] - arr[1])), 3 * arr[0], Math.max(3 * arr[2], arr[0] + arr[1] + arr[2] ))); // If the size is >3 then we can replace // all the elements with the maxmimum // element, Initialize a variable // mx = 0, Iterate throghh the array // and find the maximum element let mx = 0; for (let i = 0; i < n; i++) mx = Math.max(arr[i], mx); // Return n* mx return n * mx; } // Driver Code let arr = [ 1, 9 ]; let n = arr.length; let arr2 = [ 1, 1, 1 ]; let m = arr2.length; // Function Call document.write(find_maxsum(arr, n)); document.write(find_maxsum(arr2, m)); |
16 3
Time Complexity: O(N) where N is the size of the array.
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!