Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximum count of elements divisible on the left for any element

Maximum count of elements divisible on the left for any element

Given an array arr[] of N elements. The good value of an element arr[i] is the number of valid indices j<i such that arr[j] is divisible by arr[i].
Example: 
 

Input: arr[] = {9, 6, 2, 3} 
Output:
9 doesn’t has any element on its left. 
6 doesn’t divide any element on its left. 
2 divides 6. 
3 divides 6 and 9.
Input: arr[] = {8, 1, 28, 4, 2, 6, 7} 
Output:

Naive approach: For every element, find the count of numbers divisible by it on its left and print the maximum of these values.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum count
// of required elements
int findMax(int arr[], int n)
{
    int res = 0;
    int i, j;
     
    // For every element in the array starting
    // from the second element
    for(i = 0; i < n ; i++)
    {
         
        // Check all the elements on the left
        // of current element which are divisible
        // by the current element
        int count = 0;
        for(j = 0; j < i; j++)
        {
            if (arr[j] % arr[i] == 0)
                count += 1;
        }
        res = max(count, res);
    }
    return res;
}
 
// Driver code
int main()
{
    int arr[] = { 8, 1, 28, 4, 2, 6, 7 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << findMax(arr, n);
 
    return 0;
}
 
// This code is contributed by Rajput-Ji


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the maximum count
// of required elements
static int findMax(int arr[], int n)
{
    int res = 0;
    int i, j;
     
    // For every element in the array starting
    // from the second element
    for(i = 0; i < n ; i++)
    {
         
        // Check all the elements on the left
        // of current element which are divisible
        // by the current element
        int count = 0;
        for(j = 0; j < i; j++)
        {
            if (arr[j] % arr[i] == 0)
                count += 1;
        }
        res = Math.max(count, res);
    }
    return res;
}
 
// Driver Code
public static void main (String[] args)
{
    int arr[] = {8, 1, 28, 4, 2, 6, 7};
    int n = arr.length;
    System.out.println(findMax(arr, n));
}
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the maximum count
# of required elements
def findMax(arr, n):
    res = 0
     
    # For every element in the array starting
    # from the second element
    for i in range(1, n):
         
        # Check all the elements on the left
        # of current element which are divisible
        # by the current element
        count = 0
        for j in range(0, i):
            if arr[j] % arr[i] == 0:
                count += 1
        res = max(count, res)
    return res
 
# Driver code
arr = [8, 1, 28, 4, 2, 6, 7]
n = len(arr)
print(findMax(arr, n))


C#




// C# implementation of the above approach
using System;
     
class GFG
{
 
// Function to return the maximum count
// of required elements
static int findMax(int []arr, int n)
{
    int res = 0;
    int i, j;
     
    // For every element in the array 
    // starting from the second element
    for(i = 0; i < n ; i++)
    {
         
        // Check all the elements on the left
        // of current element which are divisible
        // by the current element
        int count = 0;
        for(j = 0; j < i; j++)
        {
            if (arr[j] % arr[i] == 0)
                count += 1;
        }
        res = Math.Max(count, res);
    }
    return res;
}
 
// Driver Code
public static void Main (String[] args)
{
    int []arr = {8, 1, 28, 4, 2, 6, 7};
    int n = arr.Length;
    Console.WriteLine(findMax(arr, n));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the maximum count
// of required elements
function findMax(arr, n)
{
    var res = 0;
    var i, j;
     
    // For every element in the array starting
    // from the second element
    for(i = 0; i < n ; i++)
    {
         
        // Check all the elements on the left
        // of current element which are divisible
        // by the current element
        var count = 0;
        for(j = 0; j < i; j++)
        {
            if (arr[j] % arr[i] == 0)
                count += 1;
        }
        res = Math.max(count, res);
    }
    return res;
}
 
// Driver code
var arr = [8, 1, 28, 4, 2, 6, 7];
var n = arr.length;
document.write( findMax(arr, n));
 
</script>


Output: 

3

 

Time Complexity: O(N2)
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Efficient approach: It can be observed that for any element pair (arr[i], arr[j]) where i < j and (arr[i] % arr[j]) = 0, if the count of elements divisible by arr[i] on its left is X then the count of elements divisible by arr[j] on its left will definitely be greater than X as all the elements which are divisible by arr[i] will also be divisible by arr[j]. So, for every element which is divisible by any other element on its right, the count of elements on its left which are divisible by it doesn’t need to be calculated which will improve the time complexity of the overall program but it should be noted that for the input where no element is divisible by any other element (for example, when all the elements are prime), the worst-case time complexity would still be O(N2).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum count
// of required elements
int findMax(int arr[], int n)
{
 
    // divisible[i] will store true
    // if arr[i] is divisible by
    // any element on its right
    bool divisible[n] = { false };
 
    // To store the maximum required count
    int res = 0;
 
    // For every element of the array
    for (int i = n - 1; i > 0; i--) {
 
        // If the current element is
        // divisible by any element
        // on its right
        if (divisible[i])
            continue;
 
        // Find the count of element
        // on the left which are divisible
        // by the current element
        int cnt = 0;
        for (int j = 0; j < i; j++) {
 
            // If arr[j] is divisible then
            // set divisible[j] to true
            if ((arr[j] % arr[i]) == 0) {
                divisible[j] = true;
                cnt++;
            }
        }
 
        // Update the maximum required count
        res = max(res, cnt);
    }
 
    return res;
}
 
// Driver code
int main()
{
    int arr[] = { 8, 1, 28, 4, 2, 6, 7 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << findMax(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the maximum count
// of required elements
static int findMax(int arr[], int n)
{
 
    // divisible[i] will store true
    // if arr[i] is divisible by
    // any element on its right
    boolean []divisible = new boolean[n];
 
    // To store the maximum required count
    int res = 0;
 
    // For every element of the array
    for (int i = n - 1; i > 0; i--)
    {
 
        // If the current element is
        // divisible by any element
        // on its right
        if (divisible[i])
            continue;
 
        // Find the count of element
        // on the left which are divisible
        // by the current element
        int cnt = 0;
        for (int j = 0; j < i; j++)
        {
 
            // If arr[j] is divisible then
            // set divisible[j] to true
            if ((arr[j] % arr[i]) == 0)
            {
                divisible[j] = true;
                cnt++;
            }
        }
 
        // Update the maximum required count
        res = Math.max(res, cnt);
    }
    return res;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 8, 1, 28, 4, 2, 6, 7 };
    int n = arr.length;
 
    System.out.println(findMax(arr, n));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
# Function to return the maximum count
# of required elements
def findMax(arr, n) :
 
    # divisible[i] will store true
    # if arr[i] is divisible by
    # any element on its right
    divisible = [ False ] * n;
 
    # To store the maximum required count
    res = 0;
 
    # For every element of the array
    for i in range(n - 1, -1, -1) :
 
        # If the current element is
        # divisible by any element
        # on its right
        if (divisible[i]) :
            continue;
 
        # Find the count of element
        # on the left which are divisible
        # by the current element
        cnt = 0;
        for j in range(i) :
 
            # If arr[j] is divisible then
            # set divisible[j] to true
            if ((arr[j] % arr[i]) == 0) :
                divisible[j] = True;
                cnt += 1;
 
        # Update the maximum required count
        res = max(res, cnt);
 
    return res;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 8, 1, 28, 4, 2, 6, 7 ];
    n = len(arr);
 
    print(findMax(arr, n));
 
# This code is contributed by kanugargng


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the maximum count
// of required elements
static int findMax(int []arr, int n)
{
 
    // divisible[i] will store true
    // if arr[i] is divisible by
    // any element on its right
    bool []divisible = new bool[n];
 
    // To store the maximum required count
    int res = 0;
 
    // For every element of the array
    for (int i = n - 1; i > 0; i--)
    {
 
        // If the current element is
        // divisible by any element
        // on its right
        if (divisible[i])
            continue;
 
        // Find the count of element
        // on the left which are divisible
        // by the current element
        int cnt = 0;
        for (int j = 0; j < i; j++)
        {
 
            // If arr[j] is divisible then
            // set divisible[j] to true
            if ((arr[j] % arr[i]) == 0)
            {
                divisible[j] = true;
                cnt++;
            }
        }
 
        // Update the maximum required count
        res = Math.Max(res, cnt);
    }
    return res;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 8, 1, 28, 4, 2, 6, 7 };
    int n = arr.Length;
 
    Console.WriteLine(findMax(arr, n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the maximum count
// of required elements
function findMax(arr, n)
{
 
    // divisible[i] will store true
    // if arr[i] is divisible by
    // any element on its right
    var divisible = Array(n).fill(false);
 
    // To store the maximum required count
    var res = 0;
 
    // For every element of the array
    for (var i = n - 1; i > 0; i--) {
 
        // If the current element is
        // divisible by any element
        // on its right
        if (divisible[i])
            continue;
 
        // Find the count of element
        // on the left which are divisible
        // by the current element
        var cnt = 0;
        for (var j = 0; j < i; j++) {
 
            // If arr[j] is divisible then
            // set divisible[j] to true
            if ((arr[j] % arr[i]) == 0) {
                divisible[j] = true;
                cnt++;
            }
        }
 
        // Update the maximum required count
        res = Math.max(res, cnt);
    }
 
    return res;
}
 
// Driver code
var arr = [8, 1, 28, 4, 2, 6, 7];
var n = arr.length;
document.write( findMax(arr, n));
 
</script>


Output: 

3

 

Time Complexity: O(n2)
Auxiliary Space: O(n), where n is the size of the given array.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
21 Dec, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments