Monday, January 13, 2025
Google search engine
HomeData Modelling & AICount number of ways in which following people can be arranged

Count number of ways in which following people can be arranged

Given integers X and Y representing X girls and Y boys, the task is to count the number of ways arranging X girls and Y boys such that girls always stay together and two boys from Y refuse to stay consecutive. Print the answer modulo 109 + 7.

Examples:

Input: X = 2, Y = 2
Output: 4
Explanation: Let’s say girls are G1 and G2 and Boys are B1 and B2, considering B1 and  B2 refuse to stay consecutive some valid permutations are B1G1G2B2, B2G1G2B1, B1G2G1B2 and B2G2G1B1.

Input: X = 3, Y = 7
Output: 181440

Naive approach: The basic way to solve the problem is as follows:

The basic way to solve this problem is to generate all possible combinations by using a recursive approach.

Time Complexity: O(N!), where N is X + Y
Auxiliary Space: O(1)

Efficient Approach:  The above approach can be optimized based on the following idea:

The problem can be solved with combinatorics:

  • Total valid arrangements = Total arrangements – Total invalid arrangements
  • Total valid arrangements with all girls together and 2 boys from Y are not consecutive = Total valid arrangements with all girls together – Total valid arrangements with all girls together and two boys from  Y always together.
  • Valid arrangements = (Y + 1)! X! – Y! * 2! * X!

Calculating answer with stepwise Modulo to avoid integer overflow.

Follow the steps below to solve the problem:

  • Initializing fact[] array and Precomputing all factorials from 1 to 100000.
  • Initializing ANS variable.
  • Calculating the answer by using the above formula.
  • Print the answer.

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
const int MOD = 1e9 + 7;
 
// Function to Count number of ways
// following people can be arranged
int countWays(int X, int Y)
{
 
    // Precomputation array storing
    // factorials MOD 1e9 + 7
    int fact[100001];
 
    // Initialize the first element
    fact[1] = 1;
 
    // Filling factorial table
    for (int i = 2; i <= 100000; i++) {
        fact[i] = (fact[i - 1] * i) % MOD;
    }
 
    // Storing Total number of arrangements
    // with all girls together
    int ans = (fact[Y + 1] * fact[X]) % MOD;
 
    // Subtracting invalid 2 boys always
    // together
    ans = ans - (fact[Y] * fact[X] * fact[2]) % MOD;
 
    // Adding MOD to avoid ans being negative
    ans = (ans + MOD) % MOD;
 
    // returning the answer
    return ans;
}
 
// Driver Code
int main()
{
    // Input 1
    int X = 2, Y = 2;
 
    // Function Call
    cout << countWays(X, Y) << endl;
 
    // Input 2
    int X1 = 3, Y1 = 7;
 
    // Function Call
    cout << countWays(X1, Y1) << endl;
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
 
class GFG {
 
  static int MOD = (int)1e9 + 7;
 
  // Function to Count number of ways
  // following people can be arranged
  static int countWays(int X, int Y)
  {
    // Precomputation array storing
    // factorials MOD 1e9 + 7
    int[] fact = new int[100001];
 
    // Initialize the first element
    fact[1] = 1;
 
    // Filling factorial table
    for (int i = 2; i <= 100000; i++) {
      fact[i] = (fact[i - 1] * i) % MOD;
    }
 
    // Storing Total number of arrangements
    // with all girls together
    int ans = (fact[Y + 1] * fact[X]) % MOD;
 
    // Subtracting invalid 2 boys always
    // together
    ans = ans - (fact[Y] * fact[X] * fact[2]) % MOD;
 
    // Adding MOD to avoid ans being negative
    ans = (ans + MOD) % MOD;
 
    // returning the answer
    return ans;
  }
 
  public static void main(String[] args)
  {
    // Input 1
    int X = 2, Y = 2;
 
    // Function Call
    System.out.println(countWays(X, Y));
 
    // Input 2
    int X1 = 3, Y1 = 7;
 
    // Function Call
    System.out.println(countWays(X1, Y1));
  }
}
 
// This code is contributed by lokesh.


Python3




# Set the constant MOD to 1e9 + 7
MOD = 1e9 + 7
 
def count_ways(X, Y):
    # Initialize a list "fact" to store factorials
    # Set the first element to 1
    fact = [1] * 100001
     
    # Fill the rest of the "fact" list with the factorials
    # of the corresponding indices, modulo MOD
    for i in range(2, 100001):
        fact[i] = (fact[i - 1] * i) % MOD
     
    # Initialize "ans" to the number of arrangements
    # with all the girls together
    ans = (fact[Y + 1] * fact[X]) % MOD
     
    # Subtract the number of invalid arrangements where
    # 2 boys are always together
    ans = ans - (fact[Y] * fact[X] * fact[2]) % MOD
     
    # Add MOD to ensure "ans" is non-negative
    ans = (ans + MOD) % MOD
     
    # Return the final result
    return ans
 
# Driver code
X=2
Y=2
print(int(count_ways(X,Y)))
X1=3
Y1=7
print(int(count_ways(X1,Y1)))
#This code is contributed by Potta Lokesh


C#




// C# code to implement the approach
using System;
 
namespace ConsoleApp
{
    class Program
    {
         
        // Function to Count number of ways
        // following people can be arranged
        static int CountWays(int X, int Y)
        {
            const int MOD = 1000000000 + 7;
 
             // Precomputation array storing
            // factorials MOD 1e9 + 7
            int[] fact = new int[100001];
            // Initialize the first element
            fact[1] = 1;
            // Filling factorial table
            for (int i = 2; i <= 100000; i++)
            {
                fact[i] = (fact[i - 1] * i) % MOD;
            }
            // Storing Total number of arrangements
           // with all girls together
            int ans = (fact[Y + 1] * fact[X]) % MOD;
            
            // Subtracting invalid 2 boys always
           // together
            ans = ans - (fact[Y] * fact[X] * fact[2]) % MOD;
           
            // Adding MOD to avoid ans being negative
            ans = (ans + MOD) % MOD;
 
            return ans;
        }
      static void Main(string[] args)
        {
            int X = 2, Y = 2;
            Console.WriteLine(CountWays(X, Y));
 
            int X1 = 3, Y1 = 7;
            Console.WriteLine(CountWays(X1, Y1));
        }
    }
}


Javascript




const MOD = 1e9 + 7;
 
// Function to Count number of ways
// following people can be arranged
function countWays(X, Y) {
 
    // Precomputation array storing
    // factorials MOD 1e9 + 7
    let fact = Array(100001).fill(0);
 
    // Initialize the first element
    fact[1] = 1;
 
    // Filling factorial table
    for (let i = 2; i <= 100000; i++) {
        fact[i] = (fact[i - 1] * i) % MOD;
    }
 
    // Storing Total number of arrangements
    // with all girls together
    let ans = (fact[Y + 1] * fact[X]) % MOD;
 
    // Subtracting invalid 2 boys always
    // together
    ans = ans - (fact[Y] * fact[X] * fact[2]) % MOD;
 
    // Adding MOD to avoid ans being negative
    ans = (ans + MOD) % MOD;
 
    // returning the answer
    return ans;
}
 
// Driver Code
console.log(countWays(2, 2));
console.log(countWays(3, 7));
 
//code by ksam24000


Output

4
181440

Time Complexity: O(N), where N is X + Y.
Auxiliary Space: O(N)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
10 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments